欢迎访问《应用生态学报》官方网站,今天是 分享到:

应用生态学报 ›› 2016, Vol. 27 ›› Issue (3): 777-784.doi: 10.13287/j.1001-9332.201603.026

• 目次 • 上一篇    下一篇

北京西山绿化树种秋季滞纳PM2.5能力及其与叶表面AFM特征的关系

陈波1, 刘海龙2, 赵东波2, 陈鹏飞2, 鲁绍伟1, 李少宁1*   

  1. 1北京市农林科学院林业果树研究所/林果业生态环境功能提升协同创新中心, 北京 100093;
    2北京市西山试验林场, 北京 100093
  • 收稿日期:2015-06-28 出版日期:2016-03-18 发布日期:2016-03-18
  • 通讯作者: * E-mail: lishaoning@126.com
  • 作者简介:陈波,男,1987年生,硕士,研究实习员.主要从事城市林业研究.E-mail:zhyechb2010@163.com
  • 基金资助:
    本文由国家林业局林业公益性行业科研专项(20130430101)资助

Relationship between retention PM25 and leaf surface AFM character of six greening trees during autumn in Beijing West Mountain

CHEN Bo1, LIU Hai-long2, ZHAO Dong-bo2, CHEN Peng-fei2, LU Shao-wei1, LI Shao-ning1*   

  1. 1Forestry and Pomology Institute, Beijing Academy of Agriculture and Forestry Sciences/Horticulture Ecological Environment Function Promoted Collaborative Innovation Center, Beijing 100093, China;
    2 Xishan Experimental Forest Farm of Beijing, Beijing 100093, China
  • Received:2015-06-28 Online:2016-03-18 Published:2016-03-18
  • Contact: * E-mail: lishaoning@126.com
  • Supported by:
    This paper was supported by the Special Fund for Forestry Scientific Research in the Public Interest of State Forestry Administration (20130430101)

摘要: 以北京西山6种绿化树种白皮松、油松、柳树、五角枫、银杏、山杨为对象,应用气溶胶再发生器对植物叶片秋季PM2.5吸附量进行定量研究,同时应用原子力显微镜(AFM)观察叶表面微形态特征,分析了叶表面粗糙度等参数,阐释了各树种叶片吸附PM2.5的机制.结果表明: 不同树种单位叶面积PM2.5吸附量排序为白皮松(2.44±0.22 μg·cm-2)>油松(2.40±0.23 μg·cm-2)>柳树(1.62±0.09 μg·cm-2)>五角枫(1.23±0.01 μg·cm-2)>银杏(1.00±0.07 μg·cm-2)>山杨(0.97±0.03 μg·cm-2);从秋季不同月份来看,不同树种单位叶面积PM2.5吸附量表现为11月(2.33±0.43 μg·cm-2)>10月(1.62±0.64 μg·cm-2)>9月(1.51±0.50 μg·cm-2).白皮松和油松有大量凹陷和突起,相对高差较大,粗糙度较大,吸滞PM2.5能力强;柳树和五角枫叶片有褶皱,粗糙度相对较高,分布有大量的突起和凹陷,吸滞PM2.5能力居中;银杏和山杨因其叶表面平滑、气孔多为长圆形,粗糙度较小,吸滞PM2.5能力较弱.不同树种正背面粗糙度平均值为白皮松(149.91±16.38 nm)>油松(124.47±10.52 nm)>柳树(98.85±5.36 nm)>五角枫(93.74±21.75 nm)>银杏(80.84±0.88 nm)>山杨(67.72±8.66 nm),这与不同树种单位叶面积PM2.5吸附量排序完全一致,叶片粗糙度与单位叶面积PM2.5吸附量呈显著正相关(R2=0.9498).为提高城市植被的环境效应,可选择叶表面形态有利于吸滞PM2.5等颗粒物的树种.

Abstract: This study investigated PM2.5 adsorption by leaves of six tree species (Pinus bungeana, Pinus tabuliformis, Salix babylonica, Acer mono, Ginkgo biloba, Populus davidiana) in the West Mountain of Beijing. An aerosol generator was used for quantitative determination of PM2.5 adsorption. Atomic force microscopy (AFM) was used to determine micro morphology characteristics on the leaf surface, including roughness parameters and the PM2.5 absorption mechanism of tree leaves. The results showed that the PM2.5 adsorption capacity per unit leaf area was as follows: P. bungeana (2.44±0.22 μg·cm-2) > P. tabuliformis (2.40±0.23 μg·cm-2) > S. babylonica (1.62±0.09 μg·cm-2) > A. mono (1.23±0.01 μg·cm-2) > G. biloba (1.00±0.07 μg·cm-2) > P. davi-diana (0.97±0.03 μg·cm-2). In autumn, PM2.5 adsorption capacity per unit leaf area was as follows: November (2.33±0.43 μg·cm-2) > October (1.62±0.64 μg·cm-2) > September (1.51±0.50 μg·cm-2). The leaves of P. bungeana and P. tabuliformis were rugged with many recesses and protrusions, large relative height difference, and high roughness, and their absorption ability of PM2.5 was strong. The leaves of S. babylonica and A. mono had folded leaf lamina and were covered by fine hairs, and their roughness was relatively high, with many protrusions and fillisters on the leaf surface. Since G. biloba and P. davidiana had smooth leaves, mostly oblong stomata and low roughness, their PM2.5 absorption ability was weaker. The ranking of average roughness on the ada-xial and abaxial side of the leaves was as follows: P. bungeana (149.91±16.38 nm) > P. tabuliformis (124.47±10.52 nm) > S. babylonica (98.85±5.36 nm) > A. mono (93.74±21.75 nm) > G. biloba (80.84±0.88 nm) > P. davidiana (67.72±8.66 nm). This accorded with PM2.5 adsorption per unit leaf area, and leaf roughness had a significant positive correlation with PM2.5 adsorption amount per unit leaf area as well (R2=0.9498). To improve the environmental effects of city vegetation, tree species with leaf surface morphology that facilitates absorption of PM2.5 and other particles should be selected.