欢迎访问《应用生态学报》官方网站,今天是 分享到:

应用生态学报 ›› 2016, Vol. 27 ›› Issue (3): 973-980.doi: 10.13287/j.1001-9332.201603.040

• 综合评述 • 上一篇    下一篇

消落带生态系统氮素截留转化的主要机制及影响因素

杨丹1,2, 樊大勇1, 谢宗强1*, 张爱英1,2, 熊高明1, 赵常明1, 徐文婷1   

  1. 1中国科学院植物研究所植被与环境变化国家重点实验室, 北京 100093;
    2中国科学院大学, 北京 100049
  • 收稿日期:2015-07-01 出版日期:2016-03-18 发布日期:2016-03-18
  • 通讯作者: * E-mail: xie@ibcas.ac.cn
  • 作者简介:杨丹,男,1989年生,硕士研究生.主要从事消落带生态系统养分循环研究.E-mail:yd0856@163.com
  • 基金资助:
    本文由中国科学院西部行动计划项目(KZCX2-XB3-09)资助

Research progress on the mechanisms and influence factors of nitrogen retention and transformation in riparian ecosystems

YANG Dan1,2, FAN Da-yong1, XIE Zong-qiang1*, ZHANG Ai-ying1,2, XIONG Gao-ming1, ZHAO Chang-ming1, XU Wen-ting1   

  1. 1State Key Laboratory of Ve-getation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China;
    2University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2015-07-01 Online:2016-03-18 Published:2016-03-18
  • Contact: * E-mail: xie@ibcas.ac.cn
  • Supported by:
    This work was supported by West Action Plan of the Chinese Academy of Sciences (KZCX2-XB3-09).

摘要: 消落带是陆地与水体(河流、湖泊、水库、湿地以及其他特殊水体)之间的生态过渡带,具有独特的生态水文学和生物地球化学过程,是截留和转化NH4+、NO3-等非点源氮素进入水体的最后一道生态屏障.整合已有相关研究成果发现: 1)植物固持作用改变氮素在土壤-植被-土壤-大气中相对存在位置;2)微生物反硝化作用将氮素从系统内永久性地去除,是消落带生态系统氮素截留转化的主要机制,但其相对贡献率仍有很大的不确定性.在不同流域背景条件下,影响消落带生态系统氮素生物地球化学循环的主要生态因子变化较大,很难确定地下水位高低、植被状况、微生物属性和土壤基质等哪一个生态因子是驱动消落带生态系统氮素循环的关键因子.研究方法的局限性、大的时空尺度数据的缺乏及对植被宽度认识的模糊性,是导致消落带生态系统氮素截留转化结果变异性大的主要原因.因此,应在消落带生态系统具体研究区位环境因子基础上,利用数学模型、GIS、RS等分析方法及同位素示踪和气体联用测定等定量分析技术,从不同时空尺度研究消落带生态系统氮素的循环与转化规律,以实现消落带生态系统氮素截留转化最优化,为消落带生态系统的科学管理提供理论基础.

Abstract: Riparian zone, the ecological transition buffer between terrestrial and aquatic ecosystems (rivers, lakes, reservoirs, wetlands, and other specific water bodies) with unique eco-hydrological and biogeochemical processes, is the last ecological barrier to prevent ammonium, nitrate and other non-point nitrogen pollutants from adjacent water bodies. Based on a summary of current progress of related studies, we found there were two major mechanisms underpinning the nitrogen retention/removal by the riparian ecosystems: 1) the relative locations of nitrogen in the soil-plant-atmosphere continuum system could be altered by riparian vegetation; 2) nitrogen could also be denitrified and then removed permanently by microorganisms in riparian soil. However, which process is more critical for the nitrogen removal remains elusive. Due to large variances of hydro-dynamic, vegetation, microbial, and soil substrate properties in nitrogen retention and transformation with various watersheds, it’s difficult to identify which factor is the most important one driving nitrogen cycle in the riparian ecosystems. It is also found that the limitation of study methods, paucity of data at large spatial and temporal scale, and no consensus on the riparian width, are the three major reasons leading to large variances of the results among studies. In conclusion, it is suggested that further efforts should be focused on: 1) the detailed analysis on the successive environmental factors with long-term; 2) the application of a comprehensive method combining mathematical models, geographic information system, remote sensing and quantified technique (such as the coupled technique of the isotopic tracer and gas exchange measurement); 3) the implementation of studies at large temporal and spatial scales. It is sure that, these efforts can help to optimize the nitrogen removal pathways in the riparian ecosystems and provide scientific basis for ecosystem management.