欢迎访问《应用生态学报》官方网站,今天是 分享到:

应用生态学报 ›› 2017, Vol. 28 ›› Issue (5): 1482-1488.doi: 10.13287/j.1001-9332.201705.029

• 目次 • 上一篇    下一篇

基于FvCB模型的几种草本和木本植物光合生理生化特性

唐星林1,2, 周本智1,2*, 周燕3, 倪霞1,2,4, 曹永慧1,2, 顾连宏5   

  1. 1中国林业科学研究院亚热带林业研究所, 杭州 311400;
    2国家林业局钱江源森林生态系统定位观测研究站, 杭州 311400;
    3新安江林场, 浙江建德 311600;
    4南京林业大学生物与环境学院, 南京 210037;
    5美国橡树岭国家实验室气候变化研究所, 美国田纳西州橡树岭 37831
  • 收稿日期:2016-09-22 修回日期:2017-02-22 发布日期:2017-05-18
  • 通讯作者: *E-mail: benzhi_zhou@126.com
  • 作者简介:唐星林, 男, 1988年生, 博士研究生. 主要从事森林生态学研究. E-mail: txl_insist@163.com
  • 基金资助:

    本文由国家重点研发计划项目(2016YFD0600202)、国家林业局948项目(2014-4-57)、浙江省自然科学基金项目(LY13C160002)、中央级公益性科研院所基本科研业务费专项(RISF2013002)和中国林业科学研究院基本科研业务费专项资金项目(CAFYBB2011007)资助

Photo-physiological and photo-biochemical characteristics of several herbaceous and woody species based on FvCB model

TANG Xing-lin1,2, ZHOU Ben-zhi1,2*, ZHOU Yan3, NI Xia1,2,4, CAO Yong-hui1,2, GU Lian-hong5   

  1. 1Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China;
    2Qianjiangyuan Forest Ecosystem Research Station, State Forestry Administration, Hangzhou 311400, China;
    3Xin’anjiang Forest Center, Jiande 311600, Zhejiang, China;
    4College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China;
    5Institute of Climate Change, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
  • Received:2016-09-22 Revised:2017-02-22 Published:2017-05-18
  • Contact: *E-mail: benzhi_zhou@126.com
  • Supported by:

    This work was supported by the National Key Research and Development Program of China (2016YFD0600202), the 948 Program of State Forestry Administration (2014-4-57), the Natural Science Foundation of Zhejiang Province, China (LY13C160002), the Special Fund for Scientific Research in the Central Public-interest Research Institutes (RISF2013002), and the Basic Research Fund of Chinese Academy of Forestry (CAFYBB2011007)

摘要: 为研究不同生活型植物的光合能力及其叶片光合机构,采用直角双曲线修正模型和C3植物FvCB模型对7种木本植物和4种草本植物的CO2响应曲线进行拟合,并对不同木本植物、不同草本植物和2种生活型植物的最大净光合速率(Pn max)、Rubisco酶最大羧化速率(Vc max)、最大电子传递速率(Jmax)、光合暗呼吸速率(Rd)和叶肉阻力(rm)等参数进行比较.结果表明: 7种木本植物Pn max大小顺序为乌桕、苎麻>润楠、海桐>青冈、苦槠、娜塔栎;乌桕、苎麻、润楠和海桐的Vc max显著大于青冈和苦槠;Jmax大小顺序为乌桕>苎麻、海桐>娜塔栎、苦槠和青冈;润楠和苦槠的rm显著大于乌桕、海桐和苎麻.商陆的Pn max显著大于藿香蓟和土牛膝;4种草本植物的Vc max无显著差异;商陆的Jmax显著大于藿香蓟;龙葵和土牛膝的rm显著大于藿香蓟;商陆的Rd显著大于藿香蓟和土牛膝.木本植物的Pn maxVc maxJmaxrm光合参数均显著大于草本植物,但二者的Rd无显著差异.不同物种之间以及2种生活型植物光合能力的差异主要是由叶片内部Rubisco酶羧化能力、电子传递能力和叶肉阻力等差异引起的.

Abstract: To explore the photosynthetic capacity and the leaf photosynthetic apparatus for plants with different life forms, CO2 response curves of 7 woody species and 4 herbaceous species were fitted by the modified rectangular hyperbolic model and the FvCB model, and the photosynthetic parameters, including maximum net photosynthetic rate (Pn max), maximal Rubisco carboxylation rate (Vc max), maximal electron transport rate (Jmax), day respiration (Rd), and mesophyll resistance to CO2 transport (rm), were compared among different woody species, among different herbaceous species, and between woody and herbaceous life-forms, respectively. The results showed Pn max of seven woody species descended in the order of Sapium sebiferum and Boehmeria nivea > Machilus pingii and Pittosporum tobira > Cyclobalanopsis glauca, Castanopsis sclerophylla, and Quercus nuttallii. Vc max of S. sebiferum, B. nivea, M. pingii, and P. tobira was significantly higher than that of C. glauca and C. sclerophylla. Jmax of woody species was in descending order as S. sebiferum > B. nivea and P. tobira > Q. nuttallii, C. sclerophylla, and C. glauca. rm of M. pingii and C. sclerophylla was higher than that of S. sebiferum, P. tobira and B. nivea. Pn max of Phytolacca acinosa was significantly higher than that of Ageratum conyzoides and Achyranthes aspera. There was no significant difference in Vc max among 4 herbaceous species. Jmax of P. acinosa was higher than that of A. conyzoides. rm of S. nigrum and A. aspera was higher than that of A. conyzoides. Rd of P. acinosa was higher than that of A. conyzoides and A. aspera. The photosynthetic parameters (Pn max, Vc max, Jmax and rm) of woody species were significantly higher than those of herbaceous species, but no significant difference was found in Rd between woody and herbaceous species. In conclusion, the difference in photosynthetic capacity among different species and between the two plant life-forms resulted from the difference in Rubisco carboxylation capacity, electron transport capacity, and mesophyll resistance among these species.