欢迎访问《应用生态学报》官方网站,今天是 分享到:

应用生态学报 ›› 2017, Vol. 28 ›› Issue (7): 2247-2253.doi: 10.13287/j.1001-9332.201707.001

• • 上一篇    下一篇

供氮水平对矮化苹果15N-尿素吸收、利用、损失及产量和品质的影响

陈倩, 丁宁, 彭玲, 葛顺峰, 姜远茂   

  1. 山东农业大学园艺科学与工程学院/作物生物学国家重点实验室, 山东泰安 271018
  • 收稿日期:2016-09-22 修回日期:2017-03-06 发布日期:2017-07-18
  • 通讯作者: *mail:ymjiang@sdau.edu.cn
  • 作者简介:陈倩,女,1987年生,博士研究生.主要从事苹果氮素营养研究.E-mail:chenqiansdau@163.com
  • 基金资助:
    本文由国家重点研发计划项目(2016YFD0201100)、国家现代农业产业技术体系建设资金项目(CARS-28)、国家自然科学基金项目(31501713)和山东农业大学博士后基金(010-76513)资助

Effects of different nitrogen application rates on 15N-urea absorption, utilization, loss and fruit yield and quality of dwarf apple

CHEN Qian, DING Ning, PENG Ling, GE Shun-feng, JIANG Yuan-mao*   

  1. College of Horticulture Science and Engineering, Shandong Agricultural University/State Key Laboratory of Crop Biology, Tai’an 271018, Shandong, China
  • Received:2016-09-22 Revised:2017-03-06 Published:2017-07-18
  • Contact: *mail:ymjiang@sdau.edu.cn
  • Supported by:
    This work was supported by the Key Research and Development Program of China (2016YFD0201100), the Earmarked Fund for the China Agriculture Research System (CARS-28), the National Natural Science Foundation of China (31501713), and the Postdoctoral Science Foundation of Shandong Agricultural University (010-76513).

摘要: 以7年生烟富3/M26/平邑甜茶为试材,采用15N同位素示踪技术,研究不同供氮水平[低氮(100 kg N·hm-2,N100)、中氮(200 kg N·hm-2,N200)和高氮(300 kg N·hm-2,N300)]对烟富3/M26/平邑甜茶15N-尿素吸收、利用、损失及产量和品质的影响.结果表明: 不同供氮水平植株的生长状况及氮素吸收、利用和损失特性差异显著.N200处理植株叶绿素含量(SPAD)、光合速率(Pn)、叶片全氮含量和生物量显著高于N100和N300处理,植株根冠比也显著增加.不同供氮水平下植株各器官对氮的吸收能力(Ndff值)存在显著差异,各测定时期果实(花)、叶片、一年生枝、多年生枝和中心干的Ndff值均为N100>N200>N300;而根的Ndff值在盛花期和春梢缓长期为N100 >N200>N300,在秋梢生长期、果实膨大期和果实成熟期为N200 >N100>N300.在果实成熟期,N200处理15N肥料利用率为23.6%,显著高于N100(16.3%)和N300处理(14.4%),而15N损失率为56.4%,显著低于N100(60.6%)和N300处理(66.1%).不同供氮水平植株的平均单果质量、单株产量、可溶性固形物、硬度、可溶性糖、可滴定酸、糖酸比均存在显著差异,且均以N200处理最高,其次是N300处理,N100处理最低.

Abstract: Seven-year-old ‘Yanfu3’/M26/M. hupehensis Rehd. seedlings and 15N trace technique were used to explore the characteristics of 15N-urea absorption, utilization, loss and fruit yield and quality under different nitrogen application rates (N100, N200 and N300). The main results were as follows: the plant growth, 15N absorption, utilization and loss differed significantly under different treatments. The plant leaf chlorophyll content (SPAD value), photosynthetic rate (Pn), total N content of leaves and the biomass, as well as the root-shoot ratio of N200 treatment were obviously higher than the N100 and N300 treatments. Significant differences were observed in the 15N derived from fertilizer (Ndff value) of different organs under different nitrogen application rates. The Ndff of fruits (flowers), leaves, one-year-old branch, and perennial branches in each measurement period was N100 >N200>N300, while that of the roots at full-bloom and spring shoot growing slowly stage was N100 >N200>N300, and in a trend of N200 >N100>N300 at autumn shoot growing stage, fruit rapid-swel-ling stage and fruit maturity stage. At fruit maturity stage, plant 15N nitrogen utilization ratio of N200 treatment was 23.6%, which was obviously higher than the N100 (16.3%) and N300 (14.4%) treatments, with the 15N loss rate of 56.4%, obviously lower than the N100 (60.6%) and N300 (66.1%) treatments. There were significant differences among the treatments in fruit mass, yield per plant, soluble solid, fruit firmness, soluble sugar, titratable acids and sugar-acid ratio of different nitrogen rates, and the N200 treatment showed the best performance, followed by the N300 treatment, and then the N100 treatment.