欢迎访问《应用生态学报》官方网站,今天是 分享到:

应用生态学报 ›› 2018, Vol. 29 ›› Issue (5): 1397-1404.doi: 10.13287/j.1001-9332.201805.021

• 稳定同位素生态学专栏 • 上一篇    下一篇

水稻光合碳在植物-土壤系统中的分配及其对CO2升高和施氮的响应

任逸文1,2, 肖谋良2, 袁红朝2, 祝贞科2, 李巧云1*, 葛体达2, 苏以荣2, 吴金水2   

  1. 1湖南农业大学生物科学技术学院, 长沙 410128;
    2中国科学院亚热带农业生态研究所, 亚热带农业生态过程重点实验室, 长沙 410125
  • 收稿日期:2017-08-06 出版日期:2018-05-18 发布日期:2018-05-18
  • 通讯作者: *E-mail: 1065596897@qq.com
  • 作者简介:任逸文,男,1993年生,硕士. 主要从事土壤生态和农业环境方向研究. E-mail: 504166469@qq.com
  • 基金资助:
    本文由国家自然科学基金项目(41771334, 41501321)、湖南省自然科学基金项目(2016JJ2136)和农业部长江中游平原农业环境重点实验室资助

Allocation of rice photosynthates in plant-soil system in response to elevated CO2 and nitrogen fertilization.

REN Yi-wen1,2, XIAO Mou-liang2, YUAN Hong-chao2, ZHU Zhen-ke2, LI Qiao-yun1*, GE Ti-da2, SU Yi-rong2, WU Jin-shui2   

  1. 1College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China;
    2Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
  • Received:2017-08-06 Online:2018-05-18 Published:2018-05-18
  • Contact: *E-mail: 1065596897@qq.com
  • Supported by:
    This work was supported by the National Natural Science Foundation of China (41771334, 41501321), Hunan Natural Science Foundation (2016JJ2136) and the Key Laboratory for Agro-Environment in Midstream of Yangtze Plain, Ministry of Agriculture, China

摘要: 采用13C-CO2进行连续标记,研究水稻分蘖期和孕穗期光合碳在植株-土壤系统中的分配及其对大气CO2浓度升高(800 μL·L-1)和施氮(100 mg·kg-1)的响应.结果表明: CO2浓度升高显著提高分蘖期根系生物量和孕穗期地上部生物量,并使生物量根冠比在分蘖期增加,而在孕穗期减小.CO2浓度升高条件下,施氮使水稻地上部分生物量增加,却显著降低了孕穗期水稻根系生物量.CO2浓度升高使光合13C在孕穗期向土壤的输入显著增加,然而施肥并没有促进由CO2浓度升高驱动的光合13C在土壤中的积累,而且还降低了土壤中的光合13C的分配比例.综上,CO2浓度升高显著提高了稻田土壤光合碳输入,促进稻田有机碳周转;施氮促进了水稻地上部的生长,却降低了光合碳向地下的分配比例.

Abstract: To examine the allocation of rice photosynthates and its response to the elevated CO2 (800 μL·L-1) and N fertilization (100 mg·kg-1) at both tillering stage and booting stage in plant-soil system, rice was continually labelled with 13CO2. The results showed that the rice root biomass at the tillering stage and the shoot biomass at the booting stage were significantly increased under elevated CO2. Elevated CO2 increased the rice biomass and root-shoot ratio at tillering stage, but reduced it at booting stage. Under elevated CO2, N fertilization promoted shoot biomass during rice growth, but significantly decreased the root biomass at booting stage. Elevated CO2 significantly increased the allocation of assimilated 13C to the soil at the booting stage. N fertilization did not promote the elevated CO2-induced stimulation of assimilated 13C allocated to the soil, and it even decreased the proportion of assimilated 13C in the soil. In summary, elevated CO2 increased the photosynthetic C allocation into soil and promoted the turnover of soil organic carbon in paddy soil. N fertilization enhanced rice shoot biomass but decreased the belowground allocation of photosynthetic C.