欢迎访问《应用生态学报》官方网站,今天是 分享到:

应用生态学报 ›› 2019, Vol. 30 ›› Issue (9): 3019-3027.doi: 10.13287/j.1001-9332.201909.012

• • 上一篇    下一篇

施氮处理下植物光合对沙质草地土壤呼吸的调控作用

林力涛1,2,3, 韩潇潇1,3, 于占源1*, 孙学凯1, 黄月1, 曾德慧1   

  1. 1中国科学院沈阳应用生态研究所大青沟沙地生态实验站, 沈阳 110016;
    2城市与区域生态国家重点实验室, 北京 100085;
    3中国科学院大学, 北京 100049
  • 收稿日期:2019-03-15 出版日期:2019-09-15 发布日期:2019-09-15
  • 通讯作者: * E-mail: yuzy@iae.ac.cn
  • 作者简介:林力涛,男,1989年生,博士研究生.主要从事草地生态系统碳循环研究.E-mail:www123lin1989@163.com
  • 基金资助:
    中国科学院战略性先导科技专项(XDA05050401,XDA050570100)和国家自然科学基金项目(30800143,41401262)资助

Role of photosynthesis in regulating soil respiration under nitrogen application in a sandy grassland

LIN Li-tao1,2,3, HAN Xiao-xiao1,3, YU Zhan-yuan1*, SUN Xue-kai1, HUANG Yue1, ZENG De-hui1   

  1. 1Daqinggou Ecological Station, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China;
    2State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China;
    3University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2019-03-15 Online:2019-09-15 Published:2019-09-15
  • Contact: * E-mail: yuzy@iae.ac.cn
  • Supported by:
    This work was supported by the Chinese Academy of Sciences Strategic Priority Research Program (XDA05050401, XDA050570100) and the National Natural Science Foundation of China (30800143, 41401262)

摘要: 本研究以科尔沁沙质草地为对象,探讨施氮对沙质草地土壤CO2排放影响的光合调控机制.结果表明: 施氮可通过增加地上植物光合改变输送到地下的光合同化产物数量,进而对土壤呼吸速率产生调控作用.植物光合速率与土壤呼吸速率呈显著正相关,施氮后二者拟合函数斜率由0.236降至0.161,拟合方程截距差值(0.51 μmol·m-2·s-1)与施氮后夜间土壤呼吸速率提升值(0.52 μmol·m-2·s-1)相近.5—10月,施氮后光合速率改变值(比率)与土壤呼吸变化值(比率)呈显著正相关,偏相关分析显示,施氮后光合速率的改变值是影响土壤呼吸速率变化的有效解释因素(P<0.05).夜间土壤呼吸速率变化仍与地上植被活动存在重要联系,日均生态系统总光合是影响夜间土壤呼吸速率变化(ΔRs)的重要因素(P<0.01).植物光合而非温度条件是影响施氮后土壤呼吸速率变化的主要因素,因而,结合植物光合的同化产物控制途径为施氮对土壤呼吸影响机制研究提供新的重要补充.

Abstract: We examined the role of photosynthesis in regulating soil CO2 emission under nitrogen enrichment in Keerqin sandy grassland. Results showed that nitrogen (N) application could affect soil respiration rate by altering the allocation of photosynthetic products to the belowground. Gross ecosystem photosynthesis rate (GEP) was positively correlated with soil respiration rate (Rs). Nitrogen application reduced slope of the fitting function from 0.236 to 0.161, with the equation intercept difference (0.51 μmol·m-2·s-1) being similar to the nighttime soil respiration rate increment (0.52 μmol·m-2·s-1). From May to October, the difference of photosynthetic rate (differential ratio) caused by nitrogen application was significantly correlated with that of soil respiration (differential ratio). Results from partial correlation confirmed the essential role of photosynthetic rate difference (ΔGEP) in driving soil respiration rate difference (ΔRs) caused by nitrogen application. In the nighttime, soil respiration rate was affected by the aboveground vegetation activities in daytime. The daily mean GEP was an important factor affecting the nighttime soil respiration rate difference (ΔRs) (P<0.01). Photosynthesis, rather than soil temperature, was the main factor affecting soil respiration rate difference (ΔRs) under nitrogen application. Thus, the role of photosynthetic assimilation-regulating may provide a novel supplement for elucidating the responses of soil respiration to nitrogen enrichment.