欢迎访问《应用生态学报》官方网站,今天是 分享到:

应用生态学报 ›› 2019, Vol. 30 ›› Issue (12): 4333-4343.doi: 10.13287/j.1001-9332.201912.004

• 综合评述 • 上一篇    下一篇

植物应对干旱胁迫的气孔调节

罗丹丹, 王传宽*, 金鹰   

  1. 东北林业大学生态研究中心/森林生态系统可持续经营教育部重点实验室, 哈尔滨 150040
  • 收稿日期:2019-08-11 出版日期:2019-12-15 发布日期:2019-12-15
  • 通讯作者: * Evmail: wangck-cf@nefu.edu.cn
  • 作者简介:罗丹丹, 女, 1990年生, 博士研究生. 主要从事植物水分生理生态学研究. E-mail: luoddsig1212@163.com
  • 基金资助:
    本文由中央高校基本科研业务费专项资金项目(2572018AA07)、国家重点研发计划项目(2016YFD0600201)和教育部长江学者和创新团队发展计划项目(IRT_15R09)资助

Stomatal regulation of plants in response to drought stress

LUO Dan-dan, WANG Chuan-kuan*, JIN Ying   

  1. Center for Ecological Research/Ministry of Education Key Laboratory of Sustaina-ble Forest Ecosystem Management, Northeast Forestry University, Harbin 150040, China
  • Received:2019-08-11 Online:2019-12-15 Published:2019-12-15
  • Contact: * Evmail: wangck-cf@nefu.edu.cn
  • Supported by:
    This work was supported by the Fundamental Research Funds for the Central Universities (2572018AA07), the National Key Research and Development Program of China (2016YFD0600201), and the Program for Changjiang Scholars and Innovative Research Team in Universities (IRT_15R09)

摘要: 气孔是植物控制叶片与大气之间碳、水交换的重要门户,植物的生长和生存都依赖于叶片气孔对碳获取和水散失的调控.因此,气孔调节机理研究与气孔导度模型研发是精确模拟陆地生态系统碳、水循环过程不可或缺的内容.近年来,随着气候变化的加剧,干旱事件愈发频繁,对植物的存活、生长和分布产生深刻影响.为了深入理解植物碳-水耦合机理过程、预测全球变化下植物及群落的动态,开展植物应对干旱胁迫的气孔调节研究尤为重要.本文综述了植物在干旱胁迫条件下气孔调节机制和模型研究进展.首先阐述了植物气孔对干旱胁迫的主动调节与被动调节,讨论了气孔调节的演化过程,包括蕨类和石松类植物的被动水力调节、被子植物的主动调节和裸子植物的双重调节机制,认为裸子植物的气孔调节方式是植物进化过程中介于蕨类、石松类植物和被子植物之间的一种重要过渡类型.然后分析了气孔调节与水力调节的关系,讨论了“植物水势和气孔导度解耦”问题中存在的争议.之后介绍了基于水分利用效率假说和最大碳增益假说所建立的气孔导度优化模型的应用,并指出后者有更强的预测能力和应用前景.最后,为了有效减少植被对气候变化响应预测中的不确定性,提出了2个亟待开展的研究问题:将植物叶片的气孔调节功能研究由个体扩展到生态系统甚至更大尺度,改进陆地生态系统碳水循环机理模型;量化气孔调节的主动水力反馈过程,修正植物气孔功能水力模型.

Abstract: The regulation on carbon acquisition and water loss plays a critical role in plant growth and survival. Stomata are important portals for plants to control the exchanges of carbon and water between leaves and the atmosphere. Therefore, understanding stomatal control mechanisms and modelling stomatal conductivity are indispensable to accurately simulate carbon and water cycling in terrestrial ecosystems. As global climate change is accelerating in recent years, drought events have become more and more frequent and thus profoundly affect the survival, growth and distribution of plants. In order to deeply understand the underlying mechanism of carbon-water coupling of plants and predict the dynamics of plants and communities under global changes, it is crucial to explore responses of stomatal regulation of plants to drought stress. In this review, we synthesized recent research progress on mechanisms and modeling of plant stomatal regulation under drought stress. First, this review described the active and passive regulation of plant stomatal control in response to drought stress, and discussed the evolution of plant stomatal regulation, including the passive hydraulic regulation of ferns and lycophytes, the active regulation of angiosperms, and the dual-control mechanism of gymnosperms that was proposed as an important transitional type during evolution from ferns to angiosperms. Then, we analyzed the relationship between stomatal and hydraulic regulations, and discussed the debates on the decoupling of plant water potential from stomatal conductivity. The application of stomatal-conductivity optimization models was introduced based on the water use efficiency hypothesis and the maximum carbon gain hypothesis. The model based on the latter had a greater potential of prediction and practical application. Finally, we proposed two issues that should be urgently addressed: 1) to scale up the research of plant stomatal regulation from leaf or individual to ecosystem or even larger scales so as to improve the mechanistic models of carbon and water cycling in terrestrial ecosystems; and 2) to quantify the hydroactive feedback processes of plant stomatal regulation so as to modify current hydraulics models of plant stomatal function.