应用生态学报 ›› 2021, Vol. 32 ›› Issue (8): 2675-2684.doi: 10.13287/j.1001-9332.202108.028
杨雅丽1,2,3, 马雪松1,2,3, 解宏图1,3, 鲍雪莲1,3, 梁超1,3, 朱雪峰1,3*, 何红波1,3, 张旭东1,3
收稿日期:
2021-02-22
接受日期:
2021-05-27
出版日期:
2021-08-15
发布日期:
2022-02-15
通讯作者:
*E-mail: zhuxuefeng@iae.ac.cn
作者简介:
杨雅丽, 女, 1992年生, 博士。主要从事土壤微生物生态研究。E-mail: yangyali0807@163.com
基金资助:
YANG Ya-li1,2,3, MA Xue-song1,2,3, XIE Hong-tu1,3, BAO Xue-lian1,3, LIANG Chao1,3, ZHU Xue-feng1,3*, HE Hong-bo1,3, ZHANG Xu-dong1,3
Received:
2021-02-22
Accepted:
2021-05-27
Online:
2021-08-15
Published:
2022-02-15
Contact:
*E-mail: zhuxuefeng@iae.ac.cn
Supported by:
摘要: 农田生态系统耕作方式显著影响土壤微生物群落结构和功能,进而影响土壤微生物介导的土壤碳循环过程。以免耕结合作物秸秆还田为核心的保护性耕作是提升土壤碳汇功能和肥力的重要措施,其中土壤微生物发挥了关键作用。尽管有较多关于保护性耕作下微生物群落结构与功能的研究,但由于土壤系统的复杂性、环境因素以及微生物群落评价方法的差异性,尚未形成对保护性耕作下土壤微生物群落响应规律的系统认知。此外,研究多关注土壤微生物作为分解者的作用以及植物源碳对土壤碳库形成的贡献,而忽略了微生物源碳对土壤碳库形成和稳定的贡献。本文在归纳土壤有机质形成和稳定理论体系演变的基础上,梳理了土壤微生物研究方法的进展,重点阐述了保护性耕作对土壤微生物生物量、群落多样性和组成、碳代谢活性以及微生物源有机碳截获的影响,并对未来该领域的研究方向进行展望,以期为探索农田生态系统土壤微生物群落响应规律及其介导的土壤碳循环功能提供参考。
杨雅丽, 马雪松, 解宏图, 鲍雪莲, 梁超, 朱雪峰, 何红波, 张旭东. 保护性耕作对土壤微生物群落及其介导的碳循环功能的影响[J]. 应用生态学报, 2021, 32(8): 2675-2684.
YANG Ya-li, MA Xue-song, XIE Hong-tu, BAO Xue-lian, LIANG Chao, ZHU Xue-feng, HE Hong-bo, ZHANG Xu-dong. Effects of conservation tillage on soil microbial community and the function of soil carbon cycling[J]. Chinese Journal of Applied Ecology, 2021, 32(8): 2675-2684.
[1] Gomiero T. Soil degradation, land scarcity and food security: Reviewing a complex challenge. Sustainability, 2016, 8: 281 [2] Pittelkow CM, Liang X, Linquist BA, et al. Productivity limits and potentials of the principles of conservation agriculture. Nature, 2015, 517: 365-368 [3] 张海林, 高旺盛, 陈阜, 等. 保护性耕作研究现状、发展趋势及对策. 中国农业大学学报, 2005, 10(1): 16-20 [Zhang H-L, Gao W-S, Chen F, et al. Prospects and present situation of conservation tillage. Journal of China Agricultural University, 2005, 10(1): 16-20] [4] Li Y, Zhang Q, Cai Y, et al. Minimum tillage and residue retention increase soil microbial population size and diversity: Implications for conservation tillage. Science of the Total Environment, 2020, 716: 137164 [5] 徐蒋来, 尹思慧, 胡乃娟, 等. 周年秸秆还田对稻麦轮作农田土壤养分、微生物活性及产量的影响. 应用与环境生物学报, 2015, 21(6): 1100-1105 [Xu J-L, Yin S-H, Hu N-J, et al. Effects of annual straw returning on soil nutrients, microbial activity and yield in a rice-wheat rotation system. Chinese Journal of Applied and Environmental Biology, 2015, 21(6): 1100-1105] [6] 李玖燃, 丁红利, 任豫霜, 等. 不同用地土壤有机质和微生物对添加秸秆的响应. 草业科学, 2017, 34(5): 958-965 [Li J-R, Ding H-L, Ren Y-S, et al. Effect of corn stalk addition on soil organic matter dynamics and microorganism under different land use patterns. Pratacultural Science, 2017, 34(5): 958-965] [7] 申源源, 陈宏. 秸秆还田对土壤改良的研究进展. 中国农学通报, 2009, 25(19): 291-294 [Shen Y-Y, Chen H. The progress of study on soil improvement research with straw stalk. Chinese Agricultural Science Bulletin, 2009, 25(19): 291-294] [8] Wang W, Akhtar K, Ren G, et al. Impact of straw mana-gement on seasonal soil carbon dioxide emissions, soil water content, and temperature in a semi-arid region of China. Science of the Total Environment, 2019, 652: 471-482 [9] Blanco-Canqui H, Lal R. Crop residue removal impacts on soil productivity and environmental quality. Critical Reviews in Plant Sciences, 2009, 28: 139-163 [10] Xiao L, Zhao R, Kuhn NJ. Straw mulching is more important than no tillage in yield improvement on the Chinese Loess Plateau. Soil and Tillage Research, 2019, 194: 104314 [11] Xu X, Schaeffer S, Sun Z, et al. Carbon stabilization in aggregate fractions responds to straw input levels under varied soil fertility levels. Soil and Tillage Research, 2020, 199: 104593 [12] Jiang Y, Ma N, Chen Z, et al. Soil macrofauna assemblage composition and functional groups in no-tillage with corn stover mulch agroecosystems in a mollisol area of Northeastern China. Applied Soil Ecology, 2018, 128: 61-70 [13] Bardgett RD, van der Putten WH. Belowground biodiversity and ecosystem functioning. Nature, 2014, 515: 505-511 [14] Zhang Q, Wu J, Yang F, et al. Alterations in soil microbial community composition and biomass following agricultural land use change. Scientific Reports, 2016, 6: 36587 [15] Zhao S, Li K, Zhou W, et al. Changes in soil microbial community, enzyme activities and organic matter fractions under long-term straw return in north-central China. Agriculture, Ecosystems and Environment, 2016, 216: 82-88 [16] Hermans SM, Buckley HL, Case BS, et al. Bacteria as emerging indicators of soil condition. Applied and Environmental Microbiology, 2017, 83: e02826-16 [17] Li T, Sun Z, He C, et al. Changes in soil bacterial community structure and microbial function caused by straw retention in the North China Plain. Archives of Agronomy and Soil Science, 2020, 66: 46-57 [18] Ramirez-Villanueva DA, Bello-Lopez JM, Navarro-Noya YE, et al. Bacterial community structure in maize residue amended soil with contrasting management practices. Applied Soil Ecology, 2015, 90: 49-59 [19] Trivedi P, Anderson IC, Singh BK. Microbial modulators of soil carbon storage: Integrating genomic and meta-bolic knowledge for global prediction. Trends in Microbio-logy, 2013, 21: 641-651 [20] Baumann K, Dignac MF, Rumpel C, et al. Soil microbial diversity affects soil organic matter decomposition in a silty grassland soil. Biogeochemistry, 2013, 114: 201-212 [21] Zhang X, Xin X, Zhu A, et al. Linking macroaggregation to soil microbial community and organic carbon accumulation under different tillage and residue managements. Soil and Tillage Research, 2018, 178: 99-107 [22] Martens DA. Plant residue biochemistry regulates soil carbon cycling and carbon sequestration. Soil Biology and Biochemistry, 2000, 32: 361-369 [23] Poeplau C, Helfrich M, Dechow R, et al. Increased microbial anabolism contributes to soil carbon sequestration by mineral fertilization in temperate grasslands. Soil Biology and Biochemistry, 2019, 130: 167-176 [24] Zhu X, Jackson RD, DeLucia EH, et al. The soil microbial carbon pump: From conceptual insights to empirical assessments. Global Change Biology, 2020, 26: 6032-6039 [25] Liang C. Soil microbial carbon pump: Mechanism and appraisal. Soil Ecology Letters, 2020, 2: 241-254 [26] Liang C, Schimel JP, Jastrow JD. The importance of anabolism in microbial control over soil carbon storage. Nature Microbiology, 2017, 2: 17105 [27] 梁超, 朱雪峰. 土壤微生物碳泵储碳机制概论. 中国科学: 地球科学, 2021, 51(5): 680-695 [Liang C, Zhu X-F. The soil microbial carbon pump as a new concept for terrestrial carbon sequestration. Scientia Sinica Terrae, 2021, 51(5): 680-695] [28] Amann RI, Ludwig W, Schleifer KH. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiological Reviews, 1995, 59: 143-169 [29] 宫曼丽, 任南琪, 邢德峰. DGGE/TGGE技术及其在微生物分子生态学中的应用. 微生物学报, 2004, 44(6): 845-848 [Gong M-L, Ren N-Q, Xing D-F. DGGE/TGGE technology and its application in microbial molecular ecology. Acta Microbiologica Sinica, 2004, 44(6): 845-848] [30] Mardis ER. Next-generation DNA sequencing methods. Annual Review of Genomics and Human Genetics, 2008, 9: 387-402 [31] 张瑞福, 崔中利, 李顺鹏. 土壤微生物群落结构研究方法进展. 土壤, 2004, 36(5): 476-480, 515 [Zhang R-F, Cui Z-L, Li S-P. Advance in methods for research on soil microbial community structure. Soils, 2004, 36(5): 476-480, 515] [32] Franzosa EA, Hsu T, Sirota-Madi A, et al. Sequencing and beyond: Integrating molecular ‘omics’ for microbial community profiling. Nature Reviews: Microbiology, 2015, 13: 360-372 [33] Dong S, Li Y, Ganjurjav H, et al. Grazing promoted soil microbial functional genes for regulating C and N cycling in alpine meadow of the Qinghai-Tibetan Plateau. Agriculture, Ecosystems and Environment, 2020, 303: 107111 [34] He Z, Piceno Y, Deng Y, et al. The phylogenetic composition and structure of soil microbial communities shifts in response to elevated carbon dioxide. The ISME Journal, 2012, 6: 259-272 [35] Sachsenberg T, Herbst FA, Taubert M, et al. Metapro-sip: Automated inference of stable isotope incorporation rates in proteins for functional metaproteomics. Journal of Proteome Research, 2015, 14: 619-627 [36] 熊艺, 林欣萌, 兰平. 土壤宏蛋白质组学之土壤蛋白质提取技术的发展. 土壤, 2016, 48(5): 835-843 [Xiong Y, Lin X-M, Lan P. The development of soil protein extraction technology in soil macroproteomics. Soils, 2016, 48(5): 835-843] [37] Joergensen RG. Amino sugars as specific indices for fungal and bacterial residues in soil. Biology and Fertility of Soils, 2018, 54: 559-568 [38] Liang C, Amelung W, Lehmann J, et al. Quantitative assessment of microbial necromass contribution to soil organic matter. Global Change Biology, 2019, 25: 3578-3590 [39] Khan KS, Mack R, Castillo X, et al. Microbial biomass, fungal and bacterial residues, and their relationships to the soil organic matter C/N/P/S ratios. Geoderma, 2016, 271: 115-123 [40] Sinsabaugh RL, Carreiro MM, Repert DA. Allocation of extracellular enzymatic activity in relation to litter composition, N deposition, and mass loss. Biogeochemistry, 2002, 60: 1-24 [41] Waldrop MP, Balser TC, Firestone MK. Linking microbial community composition to function in a tropical soil. Soil Biology and Biochemistry, 2000, 32: 1837-1846 [42] Hill GT, Mitkowski NA, Aldrich-Wolfe L, et al. Me-thods for assessing the composition and diversity of soil microbial communities. Applied Soil Ecology, 2000, 15: 25-36 [43] 郑燕, 贾仲君. 新一代高通量测序与稳定性同位素示踪DNA/RNA技术研究稻田红壤甲烷氧化的微生物过程. 微生物学报, 2013, 53(2): 173-184 [Zheng Y, Jia Z-J. Research on next-generation high-throughput sequencing and stable isotope tracer DNA/RNA techno-logy microbial process of methane oxidation in red soil of paddy field. Acta Microbiologica Sinica, 2013, 53(2): 173-184] [44] 徐英德, 孙良杰, 王阳, 等. 土壤微生物群落对玉米根茬和茎叶残体碳的利用特征. 中国环境科学, 2020, 40(10): 4504-4513 [Xu Y-D, Sun L-J, Wang Y, et al. Characteristics of microbial utilization of maize root- and straw-derived carbon. China Environmental Science, 2020, 40(10): 4504-4513] [45] 田秋香, 张威, 闫颖, 等. 稳定性同位素技术在土壤重要有机组分循环转化研究中的应用. 土壤, 2011, 43(6): 862-869 [Tian Q-X, Zhang W, Yan Y, et al. Stable isotope technology is important in soil application in the research of organic component recycling. Soils, 2011, 43(6): 862-869] [46] Jehmlich N, Vogt C, Lunsmann V, et al. Protein-sip in environmental studies. Current Opinion in Biotechnology, 2016, 41: 26-33 [47] Gerke KM, Korostilev EV, Romanenko KA, et al. Going submicron in the precise analysis of soil structure: A fib-sem imaging study at nanoscale. Geoderma, 2021, 383: 114739 [48] Solomon D, Lehmann J, Harden J, et al. Micro- and nano-environments of carbon sequestration: Multi-element stxm-nexafs spectromicroscopy assessment of microbial carbon and mineral associations. Chemical Geology, 2012, 329: 53-73 [49] Somenahally A, DuPont JI, Brady J, et al. Microbial communities in soil profile are more responsive to legacy effects of wheat-cover crop rotations than tillage systems. Soil Biology and Biochemistry, 2018, 123: 126-135 [50] Sun B, Jia S, Zhang S, et al. No tillage combined with crop rotation improves soil microbial community composition and metabolic activity. Environmental Science and Pollution Research, 2016, 23: 6472-6482 [51] Spedding TA, Hamel C, Mehuys GR, et al. Soil microbial dynamics in maize-growing soil under different til-lage and residue management systems. Soil Biology and Biochemistry, 2004, 36: 499-512 [52] 张常仁, 杨雅丽, 程全国, 等. 不同耕作模式对东北黑土微生物群落结构和酶活性的影响. 土壤与作物, 2020, 9(4): 335-347 [Zhang C-R, Yang Y-L, Cheng Q-G, et al. Effects of different tillages on microbial community structure and enzyme activity in Mollisols of China. Soils and Crops, 2020, 9(4): 335-347] [53] Tahovská K, Kaňa J, Bárta J, et al. Microbial N immobilization is of great importance in acidified mountain spruce forest soils. Soil Biology and Biochemistry, 2013, 59: 58-71 [54] Maarastawi SA, Frindte K, Linnartz M, et al. Crop rotation and straw application impact microbial communities in Italian and Philippine soils and the rhizosphere of Zea mays. Frontiers in Microbiology, 2018, 9: 1295 [55] Zhang Y, Zhang M, Tang L, et al. Long-term harvest residue retention could decrease soil bacterial diversities probably due to favouring oligotrophic lineages. Microbial Ecology, 2018, 76: 771-781 [56] 谢长校, 孙建中, 李成林, 等. 细菌降解木质素的研究进展. 微生物学通报, 2015, 42(6): 1122-1132 [Xie C-X, Sun J-Z, Li C-L, et al. Exploring the lignin degradation by bacteria. Microbiology China, 2015, 42(6): 1122-1132] [57] Potthoff M, Dyckmans J, Flessa H, et al. Decomposition of maize residues after manipulation of colonization and its contribution to the soil microbial biomass. Biology and Fertility of Soils, 2008, 44: 891-895 [58] Beare MH, Hu S, Coleman DC, et al. Influences of mycelial fungi on soil aggregation and organic matter storage in conventional and no-tillage soils. Applied Soil Ecology, 1997, 5: 211-219 [59] Posada RH, Madrian S, Rivera EL. Relationships between the litter colonization by saprotrophic and arbuscular mycorrhizal fungi with depth in a tropical forest. Fungal Biology, 2012, 116: 747-755 [60] Lehman RM, Ducey TF, Jin VL, et al. Soil microbial community response to corn stover harvesting under rain-fed, no-till conditions at multiple US locations. BioEnergy Research, 2014, 7: 540-550 [61] Sun B, Jia S, Zhang S, et al. Tillage, seasonal and depths effects on soil microbial properties in black soil of Northeast China. Soil and Tillage Research, 2016, 155: 421-428 [62] Wang Z, Li T, Li Y, et al. Relationship between the microbial community and catabolic diversity in response to conservation tillage. Soil and Tillage Research, 2020, 196: 104431 [63] Kihara J, Martius C, Bationo A, et al. Soil aggregation and total diversity of bacteria and fungi in various tillage systems of sub-humid and semi-arid Kenya. Applied Soil Ecology, 2012, 58: 12-20 [64] Lupwayi NZ, Lafond GP, Ziadi N, et al. Soil microbial response to nitrogen fertilizer and tillage in barley and corn. Soil and Tillage Research, 2012, 118: 139-146 [65] Wang J, Zhang H, Li X, et al. Effects of tillage and residue incorporation on composition and abundance of microbial communities of a fluvo-aquic soil. European Journal of Soil Biology, 2014, 65: 70-78 [66] Wang Z, Liu L, Chen Q, et al. Conservation tillage increases soil bacterial diversity in the dryland of Northern China. Agronomy for Sustainable Development, 2016, 36: 28 [67] Hartmann M, Widmer F. Community structure analyses are more sensitive to differences in soil bacterial communities than anonymous diversity indices. Applied and Environmental Microbiology, 2006, 72: 7804-7812 [68] Navarro-Noya YE, Gomez-Acata S, Montoya-Ciriaco N, et al. Relative impacts of tillage, residue management and crop-rotation on soil bacterial communities in a semi-arid agroecosystem. Soil Biology and Biochemistry, 2013, 65: 86-95 [69] Pastorelli R, Vignozzi N, Landi S, et al. Consequences on macroporosity and bacterial diversity of adopting a no-tillage farming system in a clayish soil of central Italy. Soil Biology and Biochemistry, 2013, 66: 78-93 [70] Li Y, Song D, Liang S, et al. Effect of no-tillage on soil bacterial and fungal community diversity: A meta-analysis. Soil and Tillage Research, 2020, 204: 104721 [71] Degrune F, Theodorakopoulos N, Dufrêne M, et al. No favorable effect of reduced tillage on microbial community diversity in a silty loam soil (Belgium). Agriculture, Ecosystems and Environment, 2016, 224: 12-21 [72] Ceja-Navarro JA, Rivera-Orduna FN, Patino-Zuniga L, et al. Phylogenetic and multivariate analyses to determine the effects of different tillage and residue management practices on soil bacterial communities. Applied and Environmental Microbiology, 2010, 76: 3685-3691 [73] Li T, Sun Z, He C, et al. Changes in soil bacterial community structure and microbial function caused by straw retention in the North China Plain. Archives of Agronomy and Soil Science, 2020, 66: 46-57 [74] Smith CR, Blair PL, Boyd C, et al. Microbial community responses to soil tillage and crop rotation in a corn/soybean agroecosystem. Ecology and Evolution, 2016, 6: 8075-8084 [75] Zhu XC, Sun LY, Song FB, et al. Soil microbial community and activity are affected by integrated agricultural practices in China. European Journal of Soil Science, 2018, 69: 924-935 [76] Li H, Zhang Y, Yang S, et al. Variations in soil bacterial taxonomic profiles and putative functions in response to straw incorporation combined with N fertilization du-ring the maize growing season. Agriculture, Ecosystems and Environment, 2019, 283: 106578 [77] Ortiz-Cornejo NL, Romero-Salas EA, Navarro-Noya YE, et al. Incorporation of bean plant residue in soil with different agricultural practices and its effect on the soil bacteria. Applied Soil Ecology, 2017, 119: 417-427 [78] Miadlikowska J, Kauff F, Hofstetter V, et al. New insights into classification and evolution of the Lecanoromycetes (Pezizomycotina, Ascomycota) from phylogenetic analyses of three ribosomal RNA- and two protein-coding genes. Mycologia, 2006, 98: 1088-1103 [79] Gottshall CB, Cooper M, Emery SM. Activity, diversity and function of arbuscular mycorrhizae vary with changes in agricultural management intensity. Agriculture, Ecosystems and Environment, 2017, 241: 142-149 [80] 郭喜军. 黄土高原半干旱区土壤细菌与自养固碳微生物多样性对耕作措施的响应. 硕士论文. 兰州: 甘肃农业大学, 2020 [Guo X-J. Response of Soil Bacte-rial and Autotrophic Carbon Sequestration Microbial Diversity to Tillage Measures in Semi-Arid Area of Loess Plateau. Master Thesis. Lanzhou: Gansu Agricultural University, 2020] [81] 王伏伟, 王晓波, 李金才, 等. 秸秆还田配施化肥对砂姜黑土固碳细菌的影响. 安徽农业大学学报, 2015, 42(5): 818-824 [Wang F-W, Wang X-B, Li J-C, et al. Effects of straw returning combination to fertility on the CO2-assimilating bacterial community in the lime concretion black soil. Journal of Anhui Agricultural University, 2015, 42(5): 818-824] [82] Pandey D, Agrawal M, Bohra JS. Effects of conventional tillage and no tillage permutations on extracellular soil enzyme activities and microbial biomass under rice cultivation. Soil and Tillage Research, 2014, 136: 51-60 [83] 路怡青, 朱安宁, 张佳宝, 等. 免耕和秸秆还田对土壤酶活性和微生物群落的影响. 土壤通报, 2014, 45(1): 85-90 [Lu Y-Q, Zhu A-N, Zhang J-B, et al. Effects of no-tillage and returning straw to soil on soil enzymatic activites and microbial population. Chinese Journal of Soil Science, 2014, 45(1): 85-90] [84] 曹湛波, 王磊, 李凡, 等. 土壤呼吸与土壤有机碳对不同秸秆还田的响应及其机制. 环境科学, 2016, 37(5): 1908-1914 [Cao Z-B, Wang L, Li F, et al. Response of soil respiration and organic carbon to returning of different agricultural straws and its mechanism. Environmental Science, 2016, 37(5): 1908-1914] [85] 张聪, 慕平, 尚建明. 长期持续秸秆还田对土壤理化特性、酶活性和产量性状的影响. 水土保持研究, 2018, 25(1): 92-98 [Zhang C, Mu P, Shang J-M. Effects of continuous returning corn straw on soil chemical properties, enzyme activities and yield trait. Research of Soil and Water Conservation, 2018, 25(1): 92-98] [86] Li Z, Li D, Ma L, et al. Effects of straw management and nitrogen application rate on soil organic matter fractions and microbial properties in North China Plain. Journal of Soils and Sediments, 2018, 19: 618-628 [87] Bongiorno G, Bünemann EK, Brussaard L, et al. Soil management intensity shifts microbial catabolic profiles across a range of European long-term field experiments. Applied Soil Ecology, 2020, 154: 103596 [88] Urra J, Mijangos I, Lanzen A, et al. Effects of corn stover management on soil quality. European Journal of Soil Biology, 2018, 88: 57-64 [89] Lu P, Lin YH, Yang ZQ, et al. Effects of application of corn straw on soil microbial community structure during the maize growing season. Journal of Basic Microbiology, 2015, 55: 22-32 [90] 李晓莎, 武宁, 刘玲, 等. 不同秸秆还田和耕作方式对夏玉米农田土壤呼吸及微生物活性的影响. 应用生态学报, 2015, 26(6): 1765-1771 [Li X-S, Wu N, Liu L, et al. Effects of different straw recycling and tillage methods on soil respiration and microbial activity. Chinese Journal of Applied Ecology, 2015, 26(6): 1765-1771] [91] Hao M, Hu H, Liu Z, et al. Shifts in microbial community and carbon sequestration in farmland soil under long-term conservation tillage and straw returning. Applied Soil Ecology, 2019, 136: 43-54 [92] Lu J, Qiu K, Li W, et al. Tillage systems influence the abundance and composition of autotrophic CO2-fixing bacteria in wheat soils in North China. European Journal of Soil Biology, 2019, 93: 103086 [93] de Vries M, Scholer A, Ertl J, et al. Metagenomic analyses reveal no differences in genes involved in cellulose degradation under different tillage treatments. FEMS Microbiology Ecology, 2015, 91: fiv069 [94] Ding X, Zhang B, Zhang X, et al. Effects of tillage and crop rotation on soil microbial residues in a rainfed agroecosystem of Northeast China. Soil and Tillage Research, 2011, 114: 43-49 [95] van Groenigen KJ, Bloem J, Bååth E, et al. Abundance, production and stabilization of microbial biomass under conventional and reduced tillage. Soil Biology and Biochemistry, 2010, 42: 48-55 [96] 苏淑芳, 于清军, 刘亚军, 等. 秸秆覆盖免耕对土壤氨基糖在团聚体粒级中分布的影响. 土壤通报, 2017, 48(2): 365-371 [Su S-F, Yu Q-J, Liu Y-J, et al. Effects of no-tillage with stalk mulching on distribution of amino sugars in soil aggregate fractions. Chinese Journal of Soil Science, 2017, 48(2): 365-371] [97] Li L, Wilson CB, He H, et al. Physical, biochemical, and microbial controls on amino sugar accumulation in soils under long-term cover cropping and no-tillage far-ming. Soil Biology and Biochemistry, 2019, 135: 369-378 [98] Simpson RT, Frey SD, Six J, et al. Preferential accumulation of microbial carbon in aggregate structures of no-tillage soils. Soil Science Society of America Journal, 2004, 68: 1249-1255 [99] Veloso MG, Angers DA, Chantigny MH, et al. Carbon accumulation and aggregation are mediated by fungi in a subtropical soil under conservation agriculture. Geoderma, 2020, 363: 114159 |
[1] | 肖意, 陈慧娴, 邱丽君, 张扬, 万松泽. 林下植物剔除对毛竹林土壤微生物群落结构的影响 [J]. 应用生态学报, 2021, 32(9): 3089-3096. |
[2] | 展秀丽, 许艺馨, 王红, 高滢, 韩磊. 宁夏东部风沙区固定沙丘土壤性质小尺度空间变异特征 [J]. 应用生态学报, 2021, 32(9): 3195-3203. |
[3] | 隋鑫, 霍海南, 鲍雪莲, 何红波, 张旭东, 梁超, 解宏图. 覆盖作物的种植现状及其对下茬作物生长和土壤环境影响的研究进展 [J]. 应用生态学报, 2021, 32(8): 2666-2674. |
[4] | 朱雪峰, 张春雨, 郝艳杰, 鲍雪莲, 霍海南, 何红波, 梁超, 解宏图. 玉米秸秆覆盖还田量对免耕土壤有机碳中红外光谱特征的影响 [J]. 应用生态学报, 2021, 32(8): 2685-2692. |
[5] | 李雨诺, 樊媛媛, 曹彬彬, 田霄鸿, 师江澜. 关中平原麦玉轮作体系作物秸秆不同还田模式下土壤有机碳和无机碳库变化特征 [J]. 应用生态学报, 2021, 32(8): 2703-2712. |
[6] | 沈晓琳, 王丽丽, 赵建宁, 李刚, 修伟明, 杨其琛, 张贵龙. 耕作方式对潮土土壤团聚体微生物群落结构的影响 [J]. 应用生态学报, 2021, 32(8): 2713-2721. |
[7] | 白莹, 周柳婷, 张晨, 罗扬, 赵艳琳, 林文雄, 吴则焰. 外源微生物对木麻黄幼苗生长和土壤微生物群落的影响 [J]. 应用生态学报, 2021, 32(8): 2939-2948. |
[8] | 肖烨, 黄志刚, 肖菡曦, 李友凤, 彭晚霞. 不同水位时期东洞庭湖湿地土壤微生物生物量碳氮和酶活性变化 [J]. 应用生态学报, 2021, 32(8): 2958-2966. |
[9] | 王深华, 江军, 刘丰彩, 俞梦笑, 陈洋, 许萍萍, 常中兵, 王应平. 中国成熟天然林土壤有机碳垂直分异特征 [J]. 应用生态学报, 2021, 32(7): 2371-2377. |
[10] | 宋佳珅, 张晓丽, 孔凡磊, 刘晓林, 安文静, 李玉义. 生物质调理剂对川西北高寒草地沙化土壤养分和微生物群落特征的影响 [J]. 应用生态学报, 2021, 32(6): 2217-2226. |
[11] | 李佳玉, 吕茂奎, 李晓杰, 姜永孟, 谢锦升. 水分对武夷山草甸土壤有机碳激发效应的影响 [J]. 应用生态学报, 2021, 32(4): 1250-1258. |
[12] | 洪小敏, 魏强, 李梦娇, 余坦蔚, 严强, 胡亚林. 亚热带典型森林地上和地下凋落物输入对土壤新老有机碳动态平衡的影响 [J]. 应用生态学报, 2021, 32(3): 825-835. |
[13] | 赵文, 尹亚丽, 李世雄, 王玉琴, 王彦龙. 三江源区退化高寒草甸土壤真菌群落特征 [J]. 应用生态学报, 2021, 32(3): 869-877. |
[14] | 刘学才, 陈玲, 李胜奇, 史庆华, 王晓云. 施蚯蚓粪对日光温室土壤及番茄产量与品质的影响 [J]. 应用生态学报, 2021, 32(2): 549-556. |
[15] | 蒋皓天, 何恒果, 胥晓, 董廷发. 不同性别邻体和土壤灭菌对青杨幼苗生物量的影响 [J]. 应用生态学报, 2021, 32(1): 66-72. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||