欢迎访问《应用生态学报》官方网站,今天是 分享到:

应用生态学报 ›› 2022, Vol. 33 ›› Issue (8): 2178-2186.doi: 10.13287/j.1001-9332.202208.018

• 研究论文 • 上一篇    下一篇

氮添加对毛竹林土壤酸性磷酸单酯酶动力学参数的影响

曾泉鑫1,2, 元晓春1,2,3, 周嘉聪1,2, 吴君梅1,2, 李文周4, 林惠瑛1,2, 张晓晴1,2, 陈岳民1,2*   

  1. 1福建师范大学地理科学学院, 福州 350007;
    2福建师范大学湿润亚热带山地生态国家重点实验室培育基地, 福州 350007;
    3武夷学院旅游学院, 福建武夷山 354300;
    4福建戴云山国家级自然保护区管理局, 福建泉州 362500
  • 收稿日期:2021-10-02 接受日期:2022-05-26 出版日期:2022-08-15 发布日期:2023-02-15
  • 通讯作者: * E-mail: ymchen@fjnu.edu.cn
  • 作者简介:曾泉鑫, 男, 1995年生, 博士研究生。主要从事全球变化背景下森林生态系统磷循环和土壤微生物研究。E-mail: 645823769@qq.com
  • 基金资助:
    福建省自然科学基金项目(2019J05163,2020J01142,2020J01397)、安徽省自然科学基金项目(2108085QC105)和南平市自然科学基金项目(2019J03)资助。

Effects of nitrogen addition on the kinetic parameters of soil acid phosphomonoesterase in a Moso bamboo forest

ZENG Quan-xin1,2, YUAN Xiao-chun1,2,3, ZHOU Jia-cong1,2, WU Jun-mei1,2, LI Wen-zhou4, LIN Hui-ying1,2, ZHANG Xiao-qing1,2, CHEN Yueh-min1,2*   

  1. 1School of Geographical Science, Fujian Normal University, Fuzhou 350007, China;
    2Cultivation Base of State Key Laboratory of Humid Subtropical Mountain Ecology, Fujian Normal University, Fuzhou 350007, China;
    3College of Tourism, Wuyi University, Wuyishan 354300, Fujian, China;
    4Daiyun Mountain National Nature Reserve Administration Bureau, Quanzhou 362500, Fujian, China
  • Received:2021-10-02 Accepted:2022-05-26 Online:2022-08-15 Published:2023-02-15

摘要: 土壤磷酸酶在有机磷矿化和磷循环过程中发挥着重要作用,然而,土壤磷酸酶响应氮(N)沉降的动力学机制仍不清楚。本研究在亚热带毛竹林中设置对照(0)、20(低氮)、40(中氮)和80 g N·hm-2·a-1(高氮)4种不同氮添加处理,在氮添加满3年、5年和7年时采集0~15 cm土层土壤样本,测定了土壤化学性质、微生物生物量,并分析了酸性磷酸单酯酶(ACP)的最大反应速率(Vm)、半饱和常数(Km)和催化效率(Ka)。结果表明: 氮添加显著降低了土壤可溶性有机碳、有效磷和有机磷含量,显著增加了土壤铵态氮、硝态氮含量和Vm,且Vm与有效磷、有机磷和可溶性有机碳含量存在显著相关关系;总体上,氮添加显著提高了Ka;除了在氮添加满5年时高氮处理下Km显著高于对照外,氮添加对Km无显著影响,且Km与有效磷和有机磷含量有显著负相关关系。中、高氮处理对ACP动力学参数的影响大于低氮处理。方差分解分析表明,土壤化学性质的变化而非微生物学性质的变化主导了Vm(47%)和Km(33%)的变化。总之,氮添加显著影响了毛竹林土壤的基质有效性,通过调控ACP动力学参数(尤其是Vm)进而影响了土壤磷循环。本研究有助于了解氮素富集下土壤微生物调节土壤磷循环的潜在机制,并为全球变化下土壤磷循环模型优化提供重要参数。

关键词: 氮添加, 酸性磷酸单酯酶动力学参数, 基质有效性, 有机磷, 土壤磷循环

Abstract: Soil phosphatases are important in the mineralization of organophosphates and in the phosphorus (P) cycle. The kinetic mechanisms of phosphatases in response to nitrogen (N) deposition remain unclear. We carried out a field experiment with four different concentrations of N: 0 g N·hm-2·a-1(control), 20 g N·hm-2·a-1(low N), 40 g N·hm-2·a-1(medium N), and 80 g N·hm-2·a-1(high N) in a subtropical Moso bamboo forest. Soil samples were then collected from 0 to 15 cm depth, after 3, 5 and 7 years of N addition. We analyzed soil chemical properties and microbial biomass. Acid phosphatase (ACP) was investigated on the basis of maximum reaction velocity (Vm), Michaelis constant (Km), and catalytic efficiency (Ka). Results showed that N addition significantly decreased soil dissolved organic carbon (DOC), available phosphorus, and organophosphate content, but significantly increased soil ammonium, nitrate-N content, and Vm. There was a significant relationship between Vm and the concentrations of available phosphorus, organophosphate, and soil DOC. In general, N addition substantially increased Ka, but did not affect Km. The Km value in the high N treatment group was higher than that in the control group after five years of N addition. Km was significantly negatively associated with both available phosphorus and organophosphate. Medium and high N treatments had stronger effects on the kinetic parameters of ACP than low N treatment. Results of variation partition analysis showed that changes in soil chemical properties, rather than microbial biomass, dominated changes in Vm(47%) and Km(33%). In summary, N addition significantly affected substrate availability in Moso bamboo forest soil and modulated soil P cycle by regulating ACP kinetic parameters (especially Vm). The study would improve the understanding of the mechanisms underlying soil microorganisms-regulated soil P cycle under N enrichment. These mechanisms would identify the important parameters for improving soil P cycling models under global change scenarios.

Key words: nitrogen addition, acid phosphatase kinetic parameter, substrate available, organic phosphorus, soil phosphorus cycle