欢迎访问《应用生态学报》官方网站,今天是 分享到:

应用生态学报 ›› 2011, Vol. 22 ›› Issue (10): 2589-2598.

• 研究论文 • 上一篇    下一篇

甘肃兴隆山主要森林类型凋落物累积量及持水特性

魏强1**凌雷1张广忠1闫沛斌2陶继新2柴春山1薛睿1   

  1. 1甘肃省林业科学研究院, 兰州 730020;2甘肃省兴隆山国家级自然保护区管理局, 兰州 730117
  • 出版日期:2011-10-18 发布日期:2011-10-18

Water-holding characteristics and accumulation amount of the litters under main forest types in Xinglong Mountain of Gansu, Northwest China.

WEI Qiang1, LING Lei1, ZHANG Guang-zhong1, YAN Pei-bin2, TAO Ji-xin2, CHAI Chun-shan1, XUE Rui1   

  1. 1Gansu Forestry Science and Technology Research Academy, Lanzhou 730020, China;2Administration Bureau of Xinglong Mountain National Nature Reserve, Lanzhou 730117, China
  • Online:2011-10-18 Published:2011-10-18

摘要: 2010年,采用野外实地观测与室内浸水法,对甘肃兴隆山6种主要森林类型(青杄林、青杄-白桦林、山杨-白桦林、灌丛林、落叶松林、油松林)林下凋落物的累积量、持水量、持水率和吸水速率进行了研究.结果表明:不同森林类型凋落物层累积量在13.40~46.32 t·hm-2,为油松林>青杄-白桦林>落叶松林>青杄林>灌丛林>山杨-白桦林,且针叶林累积量高于阔叶林;半分解层累积量所占比例均高于未分解层.凋落物最大持水率为185.5%~303.6%,落叶松林最大,油松林最小,持水率与浸水时间呈对数关系;针叶林未分解层持水率均小于半分解层,而阔叶林则相反.凋落物最大持水量在3.94~8.59 mm,为油松林>落叶松林>青杄-白桦林>青杄林>灌丛林>山杨-白桦林;持水量与浸水时间存在对数关系;半分解层持水量均大于未分解层.凋落物吸水速率与浸水时间存在幂函数关系,在浸水前1 h内,吸水速率均直线下降,而浸水1.0 h后吸水速率较小,且不同时段间变化较小;半分解层吸水速率高于未分解层.凋落物有效拦蓄量(深)为青杄-白桦林(5.97 mm)>油松林(5.59 mm)>落叶松林(5.46 mm)>青杄林(4.30 mm)>灌丛林(3.03 mm)>山杨-白桦林(2.13 mm).

Abstract: By the methods of field survey and laboratory soaking extraction, an investigation was conducted on the accumulation amount, water-holding capacity, water-holding rate, and water-absorption rate of the litters under six main forests (Picea wilsonii forest,P. wilsonii -  Betula platyphlla forest, Populus davidiana - B. platyphlla forest, Cotonester multiglorus - Rosa xanthina shrubs, Pinus tabulaeformis forest, and Larix principis-rupprechtii forest) in Xinglong Mountain of Gansu. The accumulation amount of the litters under the forests was 13.40-46.32 t·hm-2, and in the order of P. tabulaeformis forest > P. wilsonii - B. platyphlla  forest >L. principis-rupprechtii forest > P. wilsonii forest >C. multiglorus-R. xanthina shrubs >P. davidiana -B. platyphlla  forest. The litter storage of coniferous forests was greater than that of broadleaved forests, and the storage percentage of semi-decomposed litters was all higher than that of un-decomposed litters. The maximum water-holding rate of the litters was 185.5%-303.6%, being the highest for L. principis-rupprechtii forest and the lowest for P. tabulaeformis forest. The litters’ water-holding capacity changed logarithmically with their soaking time. For coniferous forests, un-decomposed litters had a lower water-holding rate than semi-decomposed litters; whereas for broadleaved forests, it was in adverse. The maximum water-holding capacity of the litters varied from 3.94 mm to 8.59 mm, and was in the order of P. tabulaeformis forest >L. principis-rupprechtii forest >P. wilsonii - B. platyphlla  forest >P. wilsonii forest >C. multiglorus - R. xanthina shrubs >P. davidiana - B. platyphlla  forest. The litters’ water-holding capacity also changed logarithmically with immersing time, and the half-decomposed litters had a larger water-holding capacity than un-decomposed litters. The water-absorption rate of the litters presented a power function with immersing time. Within the first one hour of immersed in water, the water-absorption rate of the litters declined linearly; after the first one hour, the litters’ water-absorption rate became smaller, and changed slowly at different immersed stages. Semi-decomposed litters had a higher water-absorption rate than un-decomposed litters. The effective retaining amount (depth) of the litters was in the order of P. wilsonii -B. platyphlla  forest (5.97 mm)>P. tabulaeformis forest (5.59 mm) >L. principis-rupprechtii forest (5.46 mm)>P. wilsonii forest (4.30 mm) >C. multiglorus - R. xanthina shrubs (3.03 mm)>P. davidiana - B. platyphlla  forest (2.13 mm).