欢迎访问《应用生态学报》官方网站,今天是 分享到:

应用生态学报

• 研究报告 • 上一篇    下一篇

低磷胁迫下磷高效基因型大麦的根系形态特征

陈海英,余海英**,陈光登,李廷轩   

  1. (四川农业大学资源学院,  成都 611130)
  • 出版日期:2015-10-18 发布日期:2015-10-18

Root morphological characteristics of barley genotype with high phosphorus efficiency under phosphorus stress.

CHEN Hai-ying, YU Hai-ying, CHEN Guang-deng, LI Ting-xuan   

  1. (College of Resource, Sichuan Agricultural University, Chengdu 611130, China)
  • Online:2015-10-18 Published:2015-10-18

摘要:

在根袋土培盆栽条件下,以磷高效基因型DH110+、DH147和低效基因型DH49大麦为试验材料,利用根系分析系统分析不同施磷(P2O5)水平(极低磷25 mg·kg-1、低磷50 mg·kg-1和正常磷75 mg·kg-1)下,磷高效基因型大麦的根系形态特征及其与植株磷素吸收的关系.结果表明: 低磷胁迫显著降低大麦生物量和磷吸收量,其中磷高效基因型的生物量和磷吸收量在各施磷水平下分别为低效基因型的1.24~1.70和1.18~1.83倍;大麦的总根长、总根表面积、平均根系直径、不定根长及其根表面积、侧根长及其根表面积均随施磷水平的降低而显著降低,其中磷高效基因型大麦在各施磷水平下的总根长、总根表面积、比根长、侧根长及根表面积分别为低效基因型的1.46~2.06、1.12~1.51、1.35~1.72、1.69~2.42和1.40~1.78倍,而平均根系直径为低效基因型的70.6%~90.2%;主成分分析表明,平均根系直径、比根表面积和比根长受基因型差异的影响较为明显,是区分两类磷效率基因型大麦根系形态差异的主要指标;偏最小二乘回归分析表明,各施磷水平下,总根长、总根表面积对大麦植株磷素吸收贡献均较大,随施磷水平降低,不定根长、不定根表面积对大麦植株磷素吸收的贡献明显降低,而平均根系直径、比根长、侧根长及其根表面积的贡献明显增加.磷高效基因型大麦可通过维持侧根的生长、根细度和比根长的增加来适应低磷胁迫.
 
 

Abstract: A pot experiment was carried out to test the effects of phosphorus (P) supply levels (25, 50, and 75 mg P2O5·kg-1) with two P genotype (efficient DH110+ and DH147, inefficient DH49) barleys on root morphology and the relationships between root morphology and P uptake. The results showed that barley biomass and P uptake were significantly reduced by low P stress. Efficient genotype barley biomass and P uptake were 1.24-1.70 and 1.18-1.83 times as much as those of inefficient genotype barley respectively. The total root length, total root surface area, average root diameter, adventitious root length and root surface area, lateral root length and root surface area of P efficient genotype barley were significantly reduced with decreasing the P supply level in soil. The total root length, total root surface area, specific root length, lateral root length and surface area of P efficient genotype barley were 1.46-2.06, 1.12-1.51, 1.35-1.72, 1.69-2.42, and 1.40-1.78 times as much as that of those of P inefficient genotype barley, respectively, while the average root diameter was 70.6%-90.2% of P inefficient genotype barley. Principal component analysis showed that the average root diameter, specific root surface area and specific root length could be used to distinguish two P genotype barleys. Partial least squares regression analysis showed that the total root length, total root surface area made great contributions to P uptake of barley in soil. The contribution of the adventitious root length and surface area on P uptake of barley decreased significantly and the average root diameter, specific root length, lateral root length and root surface area increased with the decreasing P supply level in soil. P efficient genotype barley adapted to low P stress through maintaining the lateral root growth, increasing the specific root length and root fineness.