欢迎访问《应用生态学报》官方网站,今天是 分享到:

应用生态学报 ›› 2016, Vol. 27 ›› Issue (3): 672-680.doi: 10.13287/j.1001-9332.201603.037

• 目次 • 上一篇    下一篇

马尾松人工林林窗内凋落叶微生物生物量碳和氮的动态变化

张明锦1,2,3, 陈良华1,2,3, 张健1,2,3*, 杨万勤1,2,3, 刘华1,2,3, 李勋1,2,3, 张艳1,2,3   

  1. 1四川农业大学生态林业研究所长江上游林业生态工程重点实验室, 成都 611130;
    2高山森林生态系统定位研究站/华西雨屏区生态环境监测站, 成都 611130;
    3长江上游生态安全协同创新中心, 成都 611130
  • 收稿日期:2015-07-02 出版日期:2016-03-18 发布日期:2016-03-18
  • 通讯作者: * E-mail: sicauzhangjian@163.com
  • 作者简介:张明锦,女,1990年生,硕士研究生.主要从事退化人工林生态恢复与重建研究.E-mail:958192283@qq.com
  • 基金资助:
    本文由国家自然科学基金项目(31370628)、国家科技支撑计划项目(2011BAC09B05)、四川省科技支撑计划项目(12ZC0017)、四川省科技厅应用基础项目(2012JY0047)和四川省教育厅科技创新团队计划项目(11TD006)资助

Dynamics of microbial biomass carbon and nitrogen during foliar litter decomposition under artificial forest gap in Pinus massoniana plantation

ZHANG Ming-jin1,2,3,CHEN Liang-hua1,2,3, ZHANG Jian1,2,3*, YANG Wan-qin1,2,3, LIU Hua1,2,3, LI Xun1,2,3, ZHANG Yan1,2,3   

  1. 1Sichuan Province Key laboratory of Ecological Forestry Engineering, Institute of Ecology & Fores-try, Sichuan Agricultural University, Chengdu 611130, China;
    2Long-term Research Station of Alpine Forest Ecosystems and Monitoring Station for Eco-environments in the Rainy Zone of Southwest China, Chengdu 611130, China;
    3Collaborative Innovation Center of Ecological Security in the Upper Reaches of Yangtze River, Chengdu 611130, China
  • Received:2015-07-02 Online:2016-03-18 Published:2016-03-18
  • Contact: * E-mail: sicauzhangjian@163.com
  • Supported by:
    This work was supported by the National Natural Science Foundation of China (31370628), the National Science & Technology Pillar Program of China (2011BAC09B05), the Science & Technology Pillar Program of Sichuan Province (12ZC0017), the Applied Foundation of Science and Technology Department of Sichuan Province (2012JY0047) and the Sci-Tech Innovation Team Project of Education Department of Sichuan Province (11TD006)

摘要: 目前,人工林普遍存在土壤退化、生物多样性降低等生态问题.人工抚育间伐,营造混交林是人们经营和管理人工林的主要方式之一.为了了解这种经营方式对人工林生态系统中养分循环的影响,本文研究了位于长江上游低山丘陵区的42年生马尾松人工林7种林窗(G1: 100 m2、G2: 225 m2、G3: 400 m2、G4: 625 m2、G5: 900 m2、G6: 1225 m2、G7: 1600 m2)中马尾松和红椿凋落叶分解过程中微生物生物量碳和氮的动态变化.结果表明: 中小型林窗(G1~G5)有利于凋落叶分解过程中微生物生物量碳(MBC)和生物量氮(MBN)的增加.马尾松凋落叶中的MBC和MBN以及红椿凋落叶中的MBN,在分解期(360 d)内呈现出先增加后降低的变化,在180 d时三者达到最大值,其最高含量分别达到9.87、0.22和0.80 g·kg-1.而红椿凋落叶中的MBC在分解90 d时即达到最大值44.40 g·kg-1.红椿凋落叶中的MBC和MBN显著高于马尾松凋落叶.凋落叶中的微生物生物量碳和氮与日均温和凋落物的含水率显著相关,与凋落物的特性也密切相关.这说明对人工林进行抚育间伐时可将林窗控制在100~900 m2的范围内,有利于凋落叶分解过程中微生物生物量碳和氮的增加,加快凋落叶的分解,提高人工林林地的土壤肥力.

Abstract: Nowadays large areas of plantations have caused serious ecological problems such as soil degradation and biodiversity decline. Artificial tending thinning and construction of mixed forest are frequently used ways when we manage plantations. To understand the effect of this operation mode on nutrient cycle of plantation ecosystem, we detected the dynamics of microbial bio-mass carbon and nitrogen during foliar litter decomposition of Pinus massoniana and Toona ciliate in seven types of gap in different sizes (G1: 100 m2, G2: 225 m2, G3: 400 m2, G4: 625 m2, G5: 900 m2, G6: 1225 m2, G7: 1600 m2) of 42-year-old P. massoniana plantations in a hilly area of the upper Yang-tze River. The results showed that small and medium-sized forest gaps(G1-G5) were more advantageous for the increment of microbial biomass carbon and nitrogen in the process of foliar litter decomposition. Along with the foliar litter decomposition during the experiment (360 d), microbial biomass carbon (MBC), microbial biomass nitrogen (MBN) in P. massoniana foliar litter and MBN in T. ciliata foliar litter first increased and then decreased, and respectively reached the maxima 9.87, 0.22 and 0.80 g·kg-1 on the 180th d. But the peak (44.40 g·kg-1) of MBC in T. ciliata foliar litter appeared on the 90th d. Microbial biomass carbon and nitrogen in T. ciliate was significantly higher than that of P. massoniana during foliar litter decomposition. Microbial biomass carbon and nitrogen in foliar litter was not only significantly associated with average daily temperature and the water content of foliar litter, but also closely related to the change of the quality of litter. Therefore, in the thinning, forest gap size could be controlled in the range of from 100 to 900 m2 to facilitate the increase of microbial biomass carbon and nitrogen in the process of foliar litter decomposition, accelerate the decomposition of foliar litter and improve soil fertility of plantations.