欢迎访问《应用生态学报》官方网站,今天是 分享到:

应用生态学报 ›› 2018, Vol. 29 ›› Issue (7): 2163-2172.doi: 10.13287/j.1001-9332.201807.005

• 研究报告 • 上一篇    下一篇

黄土高原植被自然恢复和人工造林对土壤碳氮储量的影响

刘玉林, 朱广宇, 邓蕾*, 陈磊, 上官周平   

  1. 西北农林科技大学黄土高原土壤侵蚀与旱地农业国家重点实验室, 陕西杨凌 712100
  • 收稿日期:2017-11-19 出版日期:2018-07-18 发布日期:2018-07-18
  • 通讯作者: *E-mail: leideng@ms.iswc.ac.cn
  • 作者简介:刘玉林, 女, 1993年生, 硕士研究生. 主要从事植被恢复与土壤碳氮过程研究. E-mail: liuyulin191@163.com
  • 基金资助:

    本文由国家自然科学基金项目(41730638, 41501094)和国家科技支撑计划项目(2015BAC01B03)资助.

Effects of natural vegetation restoration and afforestation on soil carbon and nitrogen storage in the Loess Plateau, China.

LIU Yu-lin, ZHU Guang-yu, DENG Lei*, CHEN Lei, SHANGGUAN Zhou-ping   

  1. State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling 712100, Shaanxi, China
  • Received:2017-11-19 Online:2018-07-18 Published:2018-07-18
  • Contact: *E-mail: leideng@ms.iswc.ac.cn
  • Supported by:

    This work was supported by the National Natural Science Foundation of China (41730638, 41501094) and the Natural Science and Technology Support Program (2015BAC01B03).

摘要: 土地利用方式变化能对土壤碳氮储量产生重要影响.为了探讨不同土地利用方式对土壤碳氮的影响,研究了黄土高原子午岭林区自退耕还林(草)工程实施以来(15年)自然恢复草地和人工油松林地0~100 cm土层土壤碳氮储量、碳氮比以及根系生物量的差异.结果表明:自然恢复草地和人工油松林地土壤有机碳均表现出表聚效应,自然恢复草地0~20 cm土层土壤有机碳储量显著低于人工油松林,而其他土层差异均不显著.人工油松林0~100 cm土层土壤总碳储量为117.94 Mg·hm-2,比自然恢复草地增加28.4%.两种植被类型土壤全氮储量在各土层间差异均不显著,但自然恢复草地0~100 cm土层土壤全氮总储量为7.69 Mg·hm-2,比人工油松林高17.7%.自然恢复草地和人工油松林土壤铵态氮储量在各土层间差异均显著,自然恢复草地铵态氮储量显著高于人工油松林,且随土层增加表现为先增后降的趋势.而自然恢复草地和人工油松林土壤硝态氮储量只在0~20 cm土层差异显著,且自然恢复草地高于人工油松林.自然恢复草地和人工油松林土壤碳氮比表现为0~20 cm土层差异不显著,随土层的加深表现为人工油松林碳氮比显著高于自然恢复草地,且差异逐渐增大.自然恢复草地和人工油松林土壤碳氮储量与根系生物量均呈显著正相关.因此,自然恢复草地土壤有利于氮储量的积累,人工油松林土壤有利于土壤碳储量的增加,且根系是影响土壤碳氮储量分布的重要因子.

Abstract: Changes in land use can have important impacts on soil carbon and nitrogen storage. To explore the effects of different land use types on soil carbon and nitrogen storage, we examined the differences of soil carbon and nitrogen storage, ratio of carbon to nitrogen and root biomass in the 0-100 cm soil layer of the natural grassland and Pinus tabuliformis plantation since the implementation of the project (15 years) of “Returning Farmland to Forest (Grassland)” in the Ziwuling forest region of the Loess Plateau, China. The results showed that soil organic carbon of both natural grassland and P. tabuliformis plantation showed surface polymerization effect. Soil organic carbon storage in the 0-20 cm soil layer of natural grassland was significantly lower than that of P. tabuliformis plantation, while the other soil layers showed no significant difference. The total soil carbon storage of P. tabuliformis plantation in the 0-100 cm soil layer was 117.94 Mg·hm-2, which was 28.4% higher than that of natural grassland. There was no significant difference in total nitrogen storage in different soil layers of the two vegetation types. The soil total nitrogen storage of natural grassland was 7.69 Mg·hm-2 in the 0-100 cm soil layer, which was 17.7% higher than P. tabuliformis plantation. There was significant difference in ammonium storage among different soil layers in natural grassland and P. tabuliformis plantation. The ammonium storage in natural grassland was significantly higher than that in P. tabuliformis plantation, exhibited first increase and then decrease trend with the increases of soil depth. Only in the 0-20 cm soil layer, nitrate storage in natural grassland was significantly higher than the P. tabuliformis plantation. The ratio of carbon to nitrogen of natural grassland and P. tabuliformis plantation showed no significant difference in 0-20 cm soil layer. With the increases of soil layers, the ratio of carbon to nitrogen in P. tabuliformis plantation were higher than in the natural grassland, and the difference increased gradually. In addition, soil carbon and nitrogen storage showed significantly positive correlation with root biomass in natural grassland and P. tabuliformis plantation. Therefore, natural grassland was conductive to the accumulation of soil nitrogen storage, and P. tabuliformis plantation was beneficial to increase soil carbon storage. Root was an important factor affecting the distribution of soil carbon and nitrogen storage.