欢迎访问《应用生态学报》官方网站,今天是 分享到:

应用生态学报 ›› 2019, Vol. 30 ›› Issue (3): 857-866.doi: 10.13287/j.1001-9332.201903.004

• 研究论文 • 上一篇    下一篇

库布齐沙漠东部不同生物结皮发育阶段土壤温室气体通量

王博, 段玉玺*, 王伟峰, 刘宗奇, 李晓晶, 刘源, 李少博, 郗雯   

  1. 内蒙古自治区林业科学研究院, 呼和浩特 010010
  • 收稿日期:2018-09-19 出版日期:2019-03-20 发布日期:2019-03-20
  • 通讯作者: E-mail: nmg.dyx@163.com
  • 作者简介:王 博,男,1989年生,博士研究生. 主要从事全球气候变化及温室气体通量研究. E-mail: wbbrave@163.com
  • 基金资助:
    本文由内蒙古自然科学基金项目(2017MS0368)、国家林业公益性科研专项(201404204)和林业科技创新平台项目(2017-LYPT-DW-009)资助

Greenhouse gas fluxes at different growth stages of biological soil crusts in eastern Hobq desert, China

WANG Bo, DUAN Yu-xi*, WANG Wei-feng, LIU Zong-qi, LI Xiao-jing, LIU Yuan, LI Shao-bo, XI Wen   

  1. Inner Mongolia Forestry Research Institute, Hohhot 010010, China
  • Received:2018-09-19 Online:2019-03-20 Published:2019-03-20
  • Supported by:
    This work was supported by the Inner Mongolia Natural Science Foundation (2017MS0368), the Special Fund for Forest Scientific Research in the Public Welfare (201404204), and the Forestry Science and Technology Innovation Platform (2017-LYPT-DW-009).

摘要: 以流动沙地为对照,采用时空替代法分析库布齐沙漠东部固定沙地上不同发育阶段生物结皮藻类结皮和地衣结皮土壤温室气体通量特征及其与环境因子之间的关系,研究生物结皮发育对荒漠土壤温室气体通量的影响.结果表明: 荒漠土壤CO2排放通量大小为地衣结皮(128.5 mg·m-2·h-1)>藻结皮(70.2 mg·m-2·h-1)>流动沙地(48.2 mg·m-2·h-1),CH4吸收通量大小为地衣结皮(30.4 μg·m-2·h-1)>藻结皮(21.2 μg·m-2·h-1)>流动沙地(18.2 μg·m-2·h-1),N2O排放通量大小为地衣结皮(6.6 μg·m-2·h-1)>藻结皮(5.4 μg·m-2·h-1)>流动沙地(2.5 μg·m-2·h-1).CO2排放具有明显的季节变化,生长季显著大于非生长季;CH4和N2O季节变化差异不显著,前者生长季吸收大于非生长季,后者非生长季排放大于生长季.土壤有机碳和全氮含量、土壤微生物数量均是影响温室气体通量的重要因素,环境水热因子是影响土壤CO2排放的关键因子,但CH4和N2O通量对水热因子的变化不敏感.随着植被恢复和生物结皮发育,荒漠土壤温室气体累积通量的不断增大导致其百年尺度的全球增温潜势亦显著提高,依次为地衣结皮(1135.7 g CO2-e·m-2·a-1)>藻结皮(626.5 g CO2-e·m-2·a-1) >流动沙地(422.7 g CO2-e·m-2·a-1).

关键词: 生物结皮, 荒漠生态系统, 温室气体, 植被恢复, 全球增温潜势

Abstract: We analyzed greenhouse gas fluxes at the different growth stages of algae and lichen crusts in fixed sand with mobile dune as control in the eastern Hobq Desert, China, using the spatio-temporal substitution method. We explored the correlation of these fluxes with environmental factors and with biological soil crust growth. The results showed that variation of CO2 fluxes followed the order: lichen crust (128.5 mg·m-2·h-1) > algae crust (70.2 mg·m-2·h-1) > mobile dune (48.2 mg·m-2·h-1). CH4 absorption rates were in the following order: lichen crust (30.4 μg·m-2·h-1) > algae crust (21.2 μg·m-2·h-1) > mobile dune (18.2 μg·m-2·h-1). The N2O fluxes were in the following order: lichen crust (6.6 μg·m-2·h-1) > algae crust (5.4 μg·m-2·h-1) > mobile dune (2.5 μg·m-2·h-1). CO2 emission had obvious seasonal variation, with higher emission in the growing season. CH4 and N2O fluxes had no seaonal variation. CH4 absorption mainly occurred in the growing season and N2O emission mainly occurred in non-growing season. Contents of soil total nitrogen and organic carbon and the abundance of microorganisms were important factors affecting greenhouse gas fluxes. Hydrothermic factors were important for soil CO2 emission, but not for CH4 and N2O fluxes. The cumulative greenhouse gas emissions were gradually increased with vegetation restoration and the development of biological soil crust. The global warming potential increased following an order: lichen crust (1135.7 g CO2-e·m-2·a-1) > algae crust (626.5 g CO2-e·m-2·a-1) > mobile dune (422.7 g CO2-e·m-2·a-1).

Key words: biological soil crust, vegetation restoration, greenhouse gas, global warming potential, desert ecosystem