欢迎访问《应用生态学报》官方网站,今天是 分享到:

应用生态学报 ›› 2020, Vol. 31 ›› Issue (12): 4291-4300.doi: 10.13287/j.1001-9332.202012.024

• 综合评述 • 上一篇    下一篇

特定化合物同位素分析技术在树木非结构性碳水化合物研究中的应用

刁浩宇1,2, 王安志1, 袁凤辉1, 关德新1, 孙雨1, 吴家兵1*   

  1. 1中国科学院沈阳应用生态研究所, 中国科学院森林生态与管理重点实验室, 沈阳 110016;
    2中国科学院大学, 北京 100049
  • 收稿日期:2020-07-13 接受日期:2020-09-20 发布日期:2021-06-15
  • 通讯作者: *E-mail: wujb@iae.ac.cn
  • 作者简介:刁浩宇,男,1994年生,博士研究生。主要从事气候生态学研究。E-mail:dhy_1011@163.com
  • 基金资助:
    国家重点研发计划项目(2019YFC0409102)和国家自然科学基金项目(31770755,31870625)资助

Applications of compound-specific isotope analysis in tree non-structural carbohydrates research: A review.

DIAO Hao-yu1,2, WANG An-zhi1, YUAN Feng-hui1, GUAN De-xin1, SUN Yu1, WU Jia-bing1*   

  1. 1CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China;
    2University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2020-07-13 Accepted:2020-09-20 Published:2021-06-15
  • Contact: *E-mail: wujb@iae.ac.cn
  • Supported by:
    National Key R&D Program of China (2019YFC0409102) and the National Natural Science Foundation of China (31770755, 31870625).

摘要: 特定化合物同位素分析(CSIA)可以实现对复杂基质中特定化合物稳定碳同位素组成(δ13C)的精确测定。应用此方法测定树木非结构性碳水化合物(NSC)中特定成分(如糖类、有机酸和糖醇)的δ13C,不仅能够追踪新同化的光合产物在树木中的运移及与外界的碳交换,还能够更敏感地指示树木生理状况对环境变化的响应。本文首先系统介绍了CSIA从样品采集、处理到δ13C测定的方法,然后综述了树木NSC中各成分之间及各成分在不同器官之间的δ13C差异,阐述了树木NSC的δ13C时间动态变化特征及内在机制,最后分析了NSC作为主要呼吸底物,其δ13C与树木呼吸释放CO2的δ13C(δ13CR)之间的联系,并针对CSIA分析技术在后光合分馏、树木逆境生理和年轮δ13C形成机制等研究的应用前景提出了展望。

关键词: 特定化合物同位素分析, 同位素分馏, 树木生理, 非结构性碳水化合物

Abstract: Compound-specific isotope analysis (CSIA) can precisely determine the carbon isotopic composition (δ13C) of specific compounds in a complex substrate. The δ13C values in tree non-structural carbohydrates (NSC) compounds, e.g. sugars, organic acids, and sugar alcohols, measured via CSIA could help tracing the newly assimilated photosynthate during carbon transfer and exchange with atmosphere. Further, they can act as sensitive indicators of the physiological response of trees to environmental change. In this review, we first systematically introduced the methods of CSIA with respect to sampling, purification, and analysis. Then, compound-specific δ13C difference among different NSCs and across tree carbon pools, as well as temporal pattern and mechanism underlying the variation of δ13C were described. Finally, we discussed the interaction between δ13C in tree NSCs, the main substrates of respiration, and respired CO213CR). Further studies on the post-photosynthetic discrimination, tree stress physiology, and tree-ring δ13C formation with the promising applications of CISA were suggested.

Key words: compound-specific isotope analysis, isotope fractionation, tree physiology, non-structural carbohydrates.