欢迎访问《应用生态学报》官方网站,今天是 分享到:

应用生态学报 ›› 2020, Vol. 31 ›› Issue (3): 845-852.doi: 10.13287/j.1001-9332.202003.026

• • 上一篇    下一篇

中国北方苹果主产地苹果物候期对气候变暖的响应

刘璐1, 郭梁2,3*, 王景红1, 栾青4, 傅玮东5, 李曼华6   

  1. 1陕西省农业遥感与经济作物气象服务中心, 西安 710014;
    2西北农林科技大学黄土高原土壤侵蚀与旱地农业国家重点实验室, 陕西杨凌 712100;
    3秦岭和黄土高原生态环境气象重点实验室, 西安 710014;
    4山西省气候中心, 太原 030006;
    5新疆农业气象台, 乌鲁木齐 830002;
    6山东省气候中心, 济南 250031
  • 收稿日期:2019-07-12 出版日期:2020-03-15 发布日期:2020-03-15
  • 通讯作者: E-mail: guoliang2014@nwsuaf.edu.cn
  • 作者简介:刘璐, 女, 1981年生, 硕士, 高级工程师。主要从事气候变化对果树的影响研究。E-mail: liululu128@163.com
  • 基金资助:
    本文由陕西省重点研发计划项目(2019ZDLNY07-03)、陕西省气象局重点科研项目(2016Z2)和秦岭和黄土高原生态环境气象重点实验室开放研究课题基金项目(2019Y-3)资助

Phenological responses of apple tree to climate warming in the main apple production areas in northern China

LIU Lu1, GUO Liang2,3*, WANG Jing-hong1, LUAN Qing4, FU Wei-dong5, LI Man-hua6   

  1. 1Shaanxi Meteorological Service Center of Agricultural Remote Sensing and Economic Crops, Xi’an 710014, China;
    2State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling 712100, Shaanxi, China;
    3Key Laboratory of Eco-Environment and Meteorology for the Qinling Mountains and Loess Plateau, Xi’an 710014, China;
    4Shanxi Provincial Meteorological Center, Taiyuan 030006, China;
    5Xinjiang Agricultural Meteorological Station, Urumqi 830002, China;
    6Shandong Provincial Meteorological Center, Ji’nan 250031,China
  • Received:2019-07-12 Online:2020-03-15 Published:2020-03-15
  • Contact: E-mail: guoliang2014@nwsuaf.edu.cn
  • Supported by:
    This work was supported by the Provincial Key R&D Program of Shaanxi Province (2019ZDLNY07-03), the Key Scientific Research Project of Shaanxi Meteorological Bureau (2016Z2) and the Open Research Fund of the Key Laboratory of Eco-environment and Meteorology for the Qinling Mountains and Loess Plateau (2019Y-3)

摘要: 为揭示我国北方苹果物候期时空变化特征及其对气候变暖的响应时段和强度,选取福山、万荣和阿克苏分别代表我国渤海湾、黄土高原和新疆苹果产区,利用1996—2018年各地红富士苹果芽开放期、展叶始期、始花期、可采成熟期、叶变色末期和落叶末期物候数据,分析不同物候期及生长阶段长度的变化趋势,并利用偏最小二乘回归法,从日尺度层面,分析气温变化对各物候期的影响。结果表明: 近23年来,福山、万荣和阿克苏芽开放期、展叶始期和始花期均呈现提前趋势,平均提前速率分别为0.36、0.33和0.23 d·a-1,落叶末期则呈推迟趋势(0.68 d·a-1),可采成熟期和叶变色末期在各产区的变化趋势不一致;果实生长发育期和果树全生育期分别以1.20和0.82 d·a-1的速率延长。苹果春季物候期与1月初至相应物候期发生前平均气温呈显著负相关关系,期间温度每升高1 ℃,芽开放期、展叶始期和始花期将分别提前3.70、3.47和3.48 d;秋季物候期与各物候期前21~72 d的平均气温呈正相关,但与影响时段平均气温的相关性低于春季物候期;总体上,春季物候期受气温影响的程度大于秋季物候期,且果实生长发育期和果树全生育期的延长主要由春季物候期提前所致。各主产地间苹果物候期对气候变暖的响应存在一定差异,其中气温对阿克苏苹果生长发育的影响最大,其次是万荣,对福山的影响并不明显。该研究结果可为指导各地苹果产业应对气候变化提供理论依据。

Abstract: To reveal the spatio-temporal variation characteristics of apple’s phenology and their critical response time period and intensity to the temperature change in the main production areas of northern China, we chose Fushan, Wanrong and Akesu to respresent the Bohai Gulf, the Loess Plateau and Xinjiang apple production areas, respectively. Apple’s phenology data of buds opening (BO), first leaf unfolding (LU), first flowering (FF), fruit maturing (FM), end of leaf coloring (LC) and the end of leaf fall (LF) at the three stations during 1996-2018 were used to analyze the changes of phenological occurrence dates and different growth stage lengths. Partial least squares (PLS) regression was applied to identify the impacts of climate warming on different phenology events at daily resolution. Results showed that regional mean occurrence dates of apple’s BO, LU and FF advanced by a rate of 0.36, 0.33 and 0.23 day per year, respectively. However, apple’s LF postponed by 0.68 d·a-1. The FM and LC showed different trends among all the sites. The length of fruit growing period (FG) and that of tree growing period (TG) extended at average rates of 1.20 and 0.82 day per year. Apple’s spring phenophases dates at all stations correlated negatively with mean temperature during early January to pre-phenophases date, with a 1 ℃ increase inducing an advancement of 3.70, 3.47 and 3.48 days for apple’s BO, LU and FF, respectively. In contrast, apple’s autumn phenophases correlated positively with mean temperature 21-72 days before the phenophases date, and its correlation with mean temperature was lower than the correlation for spring phenophases. Generally, the effect of temperature on spring phenophase was stronger than that of autumn phenophase, and the extension of FG and TG was mainly caused by the advance of spring phenophase. The responses of apple’s phenophases to climate warming differed across all the stations. Temperature had the greatest impact on the development of apple industry in Akesu, less in Wanrong, and with the least influence in Fushan. Our results could provide theoretical basis for response to climate change for apple industry in different areas of China.