欢迎访问《应用生态学报》官方网站,今天是 分享到:

应用生态学报 ›› 2020, Vol. 31 ›› Issue (6): 1923-1932.doi: 10.13287/j.1001-9332.202006.003

• 研究报告 • 上一篇    下一篇

太白山锐齿栎林群落结构特征

尉文1, 闫琰1*, 刘晓云1, 张硕新1,2   

  1. 1西北农林科技大学林学院, 陕西杨凌 712100;
    2陕西秦岭森林生态系统国家野外科学观测研究站, 陕西杨凌 712100
  • 收稿日期:2019-12-23 出版日期:2020-06-15 发布日期:2020-06-15
  • 通讯作者: * E-mail: yanyanemail@nwafu.edu.cn
  • 作者简介:尉 文, 女, 1993年生, 硕士研究生. 主要从事森林生态研究. E-mail: yw2358200052@126.com
  • 基金资助:
    国家自然科学基金项目(31700380)和中央高校基本科研业务专项(2452016139)资助

Community structure of Quercus aliena var acuteserrata forest in the Taibai Mountain, China

YU Wen1, YAN Yan1*, LIU Xiao-yun1, ZHANG Shuo-xin1,2   

  1. 1College of Forestry, Northwest A&F University, Yangling 712100, Shaanxi, China;
    2Qinling National Forest Ecosystem Research Station, Yangling 712100, Shaanxi, China
  • Received:2019-12-23 Online:2020-06-15 Published:2020-06-15
  • Contact: * E-mail: yanyanemail@nwafu.edu.cn
  • Supported by:
    This work was supported by the National Natural Science Foundation of China (31700380) and the Fundamental Research Fund for the Central Universities (2452016139).

摘要: 秦岭山脉是我国乃至全球生物多样性热点地区,植被资源丰富,物种多样性高。为了研究秦岭植被恢复过程中的多样性维持机制,参照CTFS样地建设方案,于2016年秋在秦岭主峰太白山北坡的锐齿栎次生林和原始林中各建立了1块100 m×150 m固定监测样地。本文以样地中所有胸径(DBH)≥1 cm的木本植物数据为基础,分析了2块样地中群落组成及结构特征。结果表明: 锐齿栎次生林和原始林样地所监测木本植物分别为2839和2840株,隶属于29科45属65种和21科37属47种,其中,偶见种和稀有种的比例分别为38.4%和24.6%、40.4%和19.2%,且均以北温带分布的植物种类居多,分别占总属数的46.6%和48.7%。2块样地中,建群种锐齿栎径级结构均呈单峰型;水榆花楸、青榨槭、四照花和三桠乌药主要伴生种的径级结构均呈倒“J”型,表明群落内主要树种都能很好地完成种群的生活史。双相关g(r)函数分析表明,在r=10 m的范围内,2块样地中的主要优势种在<2 m的尺度中聚集程度最强;随着尺度的增加,聚集程度逐渐减弱,当尺度增大到某一值时,物种呈随机或均匀分布格局。次生林和原始林的平均角尺度分别为0.56和0.58,群落整体处于聚集分布状态,并且次生林群落及主要优势种的平均角尺度均小于原始林,说明次生林样地中物种的聚集程度比原始林弱;次生林和原始林的平均大小比数均为0.47,整体林分处于中庸状态;平均混交度分别为0.70和0.57,属于强度和中度混交。干扰导致群落的物种丰富度、群落稳定性和林木空间分布格局发生变化。因此,受干扰的森林群落在植被恢复过程中,必须考虑种间相互作用、生境异质性对物种共存的影响和群落结构的动态变化。

Abstract: Qinling Mountains are biodiversity hotspots in China, with rich vegetation resources and species diversity. To clarify the mechanism underlying biodiversity maintenance during vegetation restoration in this area, we established two permanent plots with each area of 100 m×150 m in the Q. aliena var. acuteserrata secondary forest (SF) and primary forest (PF) in the northern slope of Taibai Mountain in 2016, following the standardized protocols by CTFS (the Center for Tropical Forest Science). We analyzed community composition and structure with measuring all trees with DBH ≥ 1 cm. 2839 and 2840 trees were recorded in the SF and PF plots, respectively. Trees in those two plots belong to 29 families, 45 genera, 65 species and 21 families, 37 genera, 47 species, respectively. The proportions of occasional species and rare species were 38.4% and 24.6% in the SF plot, and 40.4% and 19.2% in the PF plot. Most of the trees were distributed in northern temperate zones, and the proportions of genera were 46.6% and 48.7% in the SF and PF plots, respectively. The diameter of Q. aliena var. acuteserrata in both plots followed a unimodal distribution (more young trees than old ones). The diameter distributions of companion species (e.g., Sorbus alnifolia, Acer davidii, Cornus kousa, and Staphylea holocarpa) were inverted “J” shapes, indicating that those populations could have complete life history. In the pair correlation function g(r) analyses, the aggregation of dominant species were the strongest at 0-2 m scale in the two plots when r=10 m. The degree of aggregation gradually weakened with increasing scale. The population distribution patterns of the dominant species were random or uniform when the scale increased to certain value. The average uniform angle index (W) were 0.56 and 0.58 in the SF and PF, respectively. Trees in the communities followed an aggregated distribution. The average W of the community and dominant species in the SF were smaller than that in the PF, indicating weaker species aggregation in the SF. The average dominance in the SF and PF was both 0.47, indicating that the stands were in a co-dominant state. The average mingling was 0.70 and 0.57 in the SF and PF, respectively, which belonged to high and moderate mingling. Species richness, community stability and spatial distribution patterns of forest community could be affected by human disturbance. The role of interspecific interaction, effects of habitat heterogeneity on species coexistence, and variation of community structure should be considered during vegetation restoration of disturbed forest community.