欢迎访问《应用生态学报》官方网站,今天是 分享到:

应用生态学报

• 研究报告 • 上一篇    下一篇

阔叶和杉木人工林对土壤碳氮库的影响比较

万晓华1,2,黄志群1,2,何宗明3**,胡振宏1,2,杨靖宇3,余再鹏1,2,王民煌1,2   

  1. (1湿润亚热带山地生态国家重点实验室培育基地, 福州 350007; 2福建师范大学地理科学学院, 福州 350007; 3福建农林大学林学院, 福州 350002)
  • 出版日期:2013-02-18 发布日期:2013-02-18

Effects of broadleaf plantation and Chinese fir (Cunninghamia lanceolata) plantation on soil carbon and nitrogen pools.

WAN Xiao-hua1,2, HUANG Zhi-qun1,2, HE Zong-ming3, HU Zhen-hong1,2, YANG Jing-yu3, YU Zai-peng1,2, WANG Min-huang1,2   

  1. (1Cultivation Base of State Key Laboratory of Humid Subtropical Mountain Ecology, Fuzhou 350007, China; 2School of Geographical Science, Fujian Normal University, Fuzhou 350007, China; 3Forestry College of Fujian Agriculture and Forestry University, Fuzhou 350002,China)
  • Online:2013-02-18 Published:2013-02-18

摘要:

通过比较我国亚热带地区19年生阔叶人工林和杉木人工林土壤碳氮储量,探讨树种对土壤碳氮库的影响.结果表明:阔叶人工林0~40 cm土层碳储量平均为99.41 Mg·hm-2,比杉木人工林增加33.1%;土壤氮储量为6.18 Mg·hm-2,比杉木人工林增加22.6%.阔叶人工林林地枯枝落叶层现存量、碳和氮储量分别是杉木人工林的1.60、1.49和1.52倍,两个树种的枯落叶生物量、碳和氮储量均有显著差异.枯枝落叶层碳氮比值与土壤碳、氮储量之间呈显著负相关.阔叶人工林细根生物量(0~80 cm)是杉木林的1.28倍,其中0~10 cm土壤层细根生物量占48.2%;阔叶人工林细根碳、氮储量均高于杉木人工林.在0~10 cm土层,细根碳储量与土壤碳储量具有显著正相关关系.阔叶树种比杉木的土壤有机碳储存能力更大.
 

Abstract: A comparative study was conducted on the soil C and N pools in a 19year-old broadleaf plantation and a Chinese fir (Cunninghamia lanceolata) plantation in subtropical China, aimed to understand the effects of tree species on the soil C and N pools. In the broadleaf plantation, the C and N stocks in 0-40 cm soil layer were 99.41 Mg·hm-2 and 6.18 Mg·hm-2, being 33.1 % and 22.6 % larger than those in Chinese fir plantation, respectively. The standing biomass and the C and N stocks of forest floor in the broadleaf plantation were 1.60, 1.49, and 1.52 times of those in Chinese fir plantation, respectively, and the differences were statistically significant. There was a significant negative relationship between the forest floor C/N ratio and the soil C and N stocks. In the broadleaf plantation, the fine root biomass in 0-80 cm soil layer was 1.28 times of that in the Chinese fir plantation, and the fine root biomass in 0-10 cm soil layer accounted for 48.2 % of the total fine root biomass. The C and N stocks in the fine roots in the broadleaf plantation were also higher than those in the Chinese fir plantation. In 0-10 cm soil layer, its C stock had a significant positive relationship with the fine root C stock. It was suggested that as compared with  Chinese fir plantation, the soil in broadleaf plantation had a greater potential to accumulate organiccarbon.