欢迎访问《应用生态学报》官方网站,今天是 分享到:

应用生态学报

• 研究报告 • 上一篇    下一篇

磷高效利用野生大麦基因型筛选及其根际土壤无机磷组分特征

徐静,张锡洲**,李廷轩,余海英,戢林   

  1. (四川农业大学资源环境学院, 四川温江 611130)
  • 出版日期:2013-10-18 发布日期:2013-10-18

Screening of  wild barley genotypes with high phosphorus use efficiency  and their rhizosphere soil inorganic phosphorus fractions.

XU Jing, ZHANG Xi-zhou, LI Ting-xuan, YU Hai-ying, JI Lin   

  1. (College of Resources and Environment, Sichuan Agricultural University, Wenjiang 611130, Sichuan, China)
  • Online:2013-10-18 Published:2013-10-18

摘要:

通过土培盆栽试验,研究了16份野生大麦种质资源在相同供磷水平下磷素吸收利用的基因型差异,探讨磷高效野生大麦根际土壤无机磷组分特征.结果表明:拔节期和扬花期磷素干物质生产效率(CV=11.6%、12.4%)、成熟期磷素籽粒生产效率(CV=13.7%)基因型间差异较大.不同生育时期磷高效基因型IS-22-30和IS-22-25生物量、磷积累量和磷素干物质生产效率均显著高于低效基因型IS-07-07,且高效基因型的籽粒产量分别是低效基因型的3.10和3.20倍.不施磷、施磷30 mg·kg-1条件下,不同磷素利用效率野生大麦根际土壤有效磷和水溶性磷含量均显著低于非根际土壤,且高效基因型较低效基因型根际土壤水溶性磷亏缺量更大.根际与非根际土壤无机磷组分含量为Ca10-P>O-P>Fe-P>Al-P>Ca2-P>Ca8-P.在拔节期和扬花期,施磷30 mg·kg-1条件下,磷高效基因型根际土壤Ca8-P含量显著高于低效基因型,而Ca2-P含量显著低于低效基因型;不施磷条件下,高效基因型根际土壤Ca2-P和Ca8-P含量均显著高于低效基因型,且根际土壤Ca10-P均减少.施磷30 mg·kg-1条件下,根际土壤Fe-P和O-P含量均表现为高效基因型显著高于低效基因型,Al-P含量则呈现相反的趋势;不施磷条件下,高效基因型根际土壤Al-P、Fe-P和O-P含量均显著低于低效基因型.低磷胁迫下,高效基因型活化吸收Ca2-P、Al-P的能力强于低效基因型.
 

Abstract: A pot experiment was conducted to investigate the differences of 16 wild barley genotypes in phosphorus (P) uptake and use efficiency under the same P supply levels and the characteristics of inorganic P fractions in rhizosphere and non-rhizosphere soils of high P use efficiency genotypes. There existed greater differences in the P use efficiency for dry matter production at jointing stage (CV=11.6%) and flowering stage (CV=12.4%), and in the P use efficiency for grain yield at maturing stage (CV=13.7%) among the genotypes. The biomass, P accumulation amount, and P use efficiency for dry matter production of high P use efficiency genotypes (IS-22-30 and IS-22-25) were significantly higher than those of low P use efficiency genotype (IS-07-07), and the grain yield of IS-22-30 and IS-22-25 was 3.10 and 3.20 times of that of IS-07-07, respectively. When supplied 0 and 30 mg·P kg-1, the concentrations of available P and water soluble P in rhizosphere soils were significantly lower than those in non-rhizosphere soils, especially for the water soluble P. The concentrations of inorganic P fractions in the rhizosphere and non-rhizosphere soils were in the order of Ca10-P>O-P>Fe-P>Al-P>Ca2-P>Ca8-P. When supplied 30 mg·P kg-1, the Ca8-P concentration in high P use efficiency genotypes rhizosphere soils at jointing and flowering stages was significantly lower than that in low P use efficiency genotype rhizosphere soil, but the Ca2-P concentration was in adverse. When no P was supplied, the concentrations of Ca2-P and Ca8-P in high P use efficiency genotypes rhizosphere soils were significantly higher than those in low P use efficiency genotype rhizosphere soil, and the Ca10-P concentration in the rhizosphere soils of all genotypes decreased. When supplied 30 mg·P kg-1, the Fe-P and O-P concentrations in high P use efficiency genotypes rhizosphere soils were significantly higher than that in low P use efficiency genotype rhizosphere soil, but the Al-P concentration presented an opposite trend. Under no P supply, the Al-P, Fe-P, and O-P concentrations in high P use efficiency genotypes rhizosphere soils were significantly lower than those in low P use efficiency genotype rhizosphere soil. It was suggested that under low P stress, the capabilities of high P use efficiency genotypes in activating and absorbing soil Al-P and Ca2-P were stronger than those of low P use efficiency genotype.