欢迎访问《应用生态学报》官方网站,今天是 分享到:

应用生态学报

• 研究报告 • 上一篇    下一篇

间伐对杉木人工林碳储量的长期影响

徐金良1,毛玉明1,成向荣2**,虞木奎2   

  1. (1浙江省开化县林场, 浙江开化 324300; 2中国林业科学研究院亚热带林业研究所, 浙江富阳 311400)
  • 出版日期:2014-07-18 发布日期:2014-07-18

Long-term effects of thinning on carbon storage in Cunninghamia lanceolata plantations.

XU Jin-liang1, MAO Yu-ming1, CHENG Xiang-rong2, YU Mu-kui2   

  1. (1Zhejiang Province Kaihua Forestry Farm, Kaihua 324300, Zhejiang, China; 2Institute of Subtropical Forestry, Chinese Academy of Forestry, Fuyang 311400, Zhejiang, China)
  • Online:2014-07-18 Published:2014-07-18

摘要:

间伐改变了林分环境,影响林木生长及碳储量,准确评估间伐后人工林碳储量变化对碳汇林业的发展具有重要意义.在浙江开化采用下层间伐法,开展了3种间伐处理(对照、中度和强度间伐)对22年生杉木人工林碳储量及其组分分配影响的研究.强度间伐(总间伐强度50%)和中度间伐(总间伐强度35%)均在第7年和第14年进行共计2次间伐,对照在林木生长中期(第14年)进行1次轻度间伐(间伐强度15%).结果表明: 树干碳储量的比例随间伐强度增大而增加,树枝、叶和根碳储量的比例则略有降低,表明间伐有利于树干碳储量的累积.中度和强度间伐处理杉木人工林乔木层碳储量随间伐强度增加而减小,碳储量分别为对照的89.0%和83.1%.第1次间伐后2 a乔木层碳储量显著减少,第2次间伐后8 a,间伐处理乔木层碳储量恢复速率较快,强度间伐乔木层碳储量增量接近对照.林下植被层、凋落物层和土壤层碳储量在不同间伐处理间差异不显著.对照、中度和强度间伐杉木人工林系统总碳储量分别为169.34、156.65和154.37 t·hm-2,不同间伐处理间差异不显著.可见,试验区杉木人工林间伐15 a后不会导致生态系统总碳储量降低.
 

Abstract: The stand environment and tree growth could be changed as well as carbon storage be affected by thinning. Thus it is important to conduct the research on changes of carbon stock in plantations after thinning for assessing the dynamics of forest ecosystem carbon pool. The carbon storage and its distribution of various components in 22-year-old Cunninghamia lanceolata plantations were studied with control and different treatments such as moderate and heavy thinning. Moderate (thinning intensity was 35%) and heavy (thinning intensity was 50%) thinning treatments were conducted twice at the age of 7 and 14 years, respectively. The stand of control was thinned 15% in the 14th year. The results showed that the proportion of stem carbon storage increased with the increasing thinning intensity, while the proportion of carbon storage in branches, leaves and roots slightly decreased, which suggested that thinning was beneficial for carbon stocking in stem. However, the carbon storage in arbor layer decreased with the thinning intensity in C. lanceolata plantation under moderate and heavy thinning treatments, accounted for 89.0% and 83.1% of the control, respectively. The arbor carbon storage decreased in followed two years after the first thinning. The carbon storage in arbor layer had a fast recovery rate within eight years after the second thinning, and the increment of carbon storage in arbor layer had no difference with the control for the heavy thinning treatment. The carbon storage in understory vegetation, litter and soil layers also had no significant difference under the different thinning treatments. Generally total ecosystem carbon storage under the control, moderate and heavy thinning treatments reached 169.34, 156.65 and 154.37 t·hm-2, respectively. There was no significant difference among the three treatments. Therefore, it could be concluded that the carbon storage in C. lanceolata plantation did not reduce after thinning in more than 15 years.