欢迎访问《应用生态学报》官方网站,今天是 分享到:

应用生态学报

• 研究报告 • 上一篇    下一篇

越冬前增温对小麦生长发育和产量的影响

李向东**,张德奇,王汉芳,邵运辉,方保停,吕风荣,岳俊芹,马富举   

  1. (河南省农业科学院小麦研究所/小麦国家工程实验室/农业部黄淮中部小麦生物学与遗传育种重点实验室/河南省小麦生物学重点实验室, 郑州 450002)
  • 出版日期:2015-03-18 发布日期:2015-03-18

Impact of temperature increment before the over-wintering period on growth and development and grain yield of winter wheat.

LI Xiang-dong, ZHANG De-qi, WANG Han-fang, SHAO Yun-hui, FANG Bao-ting, LYU Feng-rong, YUE Jun-qin, MA Fu-ju   

  1. (Wheat Research Institute of Henan Academy of Agricultural Sciences/National Laboratory of Wheat Engineering/Key Laboratory of Wheat Biology and Genetic Breeding in Central HuangHuai Region, Ministry of Agriculture/Henan Provincial Key Laboratory of Wheat Biology, Zhengzhou 450002, China)
  • Online:2015-03-18 Published:2015-03-18

摘要:

为了揭示越冬前积温增加对冬小麦生长发育进程和产量的影响,于2010—2012年在设施内进行人为控制增温模拟试验.以试验期室外环境实测温度值为对照,设置越冬前增温40、50、60 d,研究越冬前不同积温(≥0 ℃)对小麦物候期、幼穗发育进程、开花期和成熟期叶片光合生理特性及产量构成要素的影响.结果表明: 设施内越冬前增加积温在越冬前对幼穗发育进程有一定影响,对拔节期幼穗发育进程和育性影响明显,孕穗后随着发育进程的加快影响减小,成熟期大部分处理间的生物学性状差异不显著.越冬前积温增加不超过25 ℃对幼穗影响很小;积温增加大于60 ℃幼穗发育进程明显加快,积温越高变化越明显.冬前积温增加到一定幅度将导致冬小麦物候期提前,积温增加超过60 ℃,拔节期叶龄提高0.8以上,抽穗期和成熟期分别提前1 d左右.物候期的提前和幼穗发育进程的加快使小麦整个发育期缩短,容易遭受春季低温危害,造成小花败育甚至小穗冻死;冬前积温过高还导致后期旗叶光合能力下降,灌浆期缩短,并造成减产.

 

Abstract: The effect of temperature increment before the over-wintering period on winter wheat development and grain yield was evaluated in an artificial climate chamber (TPG 1260, Australia) from 2010 to 2011. Winter wheat cultivar ‘Zhengmai 7698’ was used in this study. Three temperature increment treatments were involved in this study, i.e., temperature increment last 40, 50 and 60 days, respectively, before the over-wintering period. Control was not treated by temperature increment. The results showed that temperature increment before the over-wintering period had no significant effect on earlier phase spike differentiation. But an apparent effect on later phase spike differentiation was observed. High temperature effect on spike differentiation disappeared when the difference of effective accumulated temperature between the temperature increment treatment and the control was lower than 25 ℃. However, the foliar age at the jointing stage was enhanced more than 0.8, heading and physiological ripening were advanced 1 day each, when the effective accumulated temperature before the over-wintering period increased 60 ℃. Higher effective accumulated temperature before the over-wintering period accelerated winter wheat growth and development, which resulted in a short spike differentiation period. Winter wheat was easy to suffer freeze damage, which lead to floret abortion and spikelet death in spring under this situation. Meanwhile, higher effective accumulated temperature before the over-wintering period also reduced photosynthetic capacity of flag leaf, shortened the grain filling period, and led to wheat grain yield reduction.