欢迎访问《应用生态学报》官方网站,今天是 分享到:

应用生态学报

• 综合评述 • 上一篇    下一篇

利用蛋白质组学技术揭示的植物高温胁迫响应机制

刘军铭1,赵琪1,尹赜鹏1,徐晨曦2,王全华2,戴绍军1**   

  1. (1东北林业大学盐碱地生物资源环境研究中心/东北油田盐碱植被恢复与重建教育部重点实验室,  哈尔滨 150040;  2上海师范大学生命与环境科学学院,  上海 200234)
  • 出版日期:2015-08-18 发布日期:2015-08-18

Heat-responsive mechanisms in plants revealed by proteomic analysis: A review.

LIU Jun-ming1, ZHAO Qi1, YIN Ze-peng1, XU Chen-xi2, WANG Quan-hua2, DAI Shao-jun1   

  1. (1Alkali Soil Natural Environmental Science Center, Northeast Forestry University/Ministry of Education Key Laboratory of Salinealkali Vegetation Ecology Restoration in Oil Field, Harbin 150040,  China; 2College of Life and Environmental Sciences, Shanghai Normal University, Shanghai 200234, China)
  • Online:2015-08-18 Published:2015-08-18

摘要: 高温是限制植物生长和产量的主要非生物胁迫因子.近年来,蛋白质组学研究为我们从系统生物学水平深入认识植物高温胁迫应答的复杂的分子机制提供了重要信息.目前,已经分析了模式植物拟南芥、主要粮食作物(大豆、水稻和小麦)、耐热植物(匍匐剪股颖、马齿苋、假虎刺),以及野生毛葡萄、胡杨、苜蓿、半夏等应答高温胁迫过程中的蛋白质组变化特征.这些研究共鉴定到838种响应高温胁迫的蛋白质,其中534种蛋白质表达受到高温诱导,304种蛋白质表达受到抑制.本文整合分析了上述植物在应对不同程度高温胁迫(30~45 ℃处理0~10 d)时蛋白质表达模式的变化特征,为解释高温胁迫应答网络体系中重要的信号与代谢通路(如:信号转导、胁迫防御、糖类与能量代谢、光合作用、转录、蛋白质合成与命运、膜与转运等)的变化提供了证据和线索,为深入认识植物应答高温胁迫的分子调控机制奠定了坚实的基础.

Abstract: Heat stress is a major abiotic stress that limits plant growth and productivity. In recent years, proteomic investigations provide more information for understanding the sophisticated heatresponsive molecular mechanism in plants at systematic biological level. The heatresponsive proteomic patterns in several plants, i.e., model plants (Arabidopsis thaliana), staple food crops (soybean, rice and wheat), heattolerant plants (Agrostis stolonifera, Portulaca oleracea, and Carissa spinarum), grapevine, Populus euphratica, Medicago sativa, and Pinellia ternate, were reported. A total of 838 heatresponsive proteins have been identified in these studies. Among them, 534 proteins were induced and the expression of 304 proteins was reduced in plants under heat stress. In this paper, the diverse protein patterns in plants under various heat stress conditions (30-45 ℃ for 0-10 d) were analyzed integratively. This provided new evidences and clues for further interpreting the signaling and metabolic pathways, e.g., signaling, stress and defense, carbohydrate and energy metabolism, photosynthesis, transcription, protein synthesis and fate, membrane and transport, in heatresponsive networks, and laid a foundation for a holistic understanding of the molecular regulatory mechanism in plants in response to heat stress.