欢迎访问《应用生态学报》官方网站,今天是 分享到:

应用生态学报 ›› 2019, Vol. 30 ›› Issue (3): 711-717.doi: 10.13287/j.1001-9332.201903.027

• 研究论文 • 上一篇    下一篇

广西猫儿山不同海拔土壤碳氮磷生态化学计量特征

秦海龙1, 付旋旋2, 卢瑛1,3*, 韦翔华2, 李博1, 贾重建1, 姜坤1   

  1. 1华南农业大学资源环境学院, 广州 510642;
    2广西大学农学院, 南宁 530002;
    3广东省土地利用与整治重点实验室, 广州 510642
  • 收稿日期:2018-08-21 出版日期:2019-03-20 发布日期:2019-03-20
  • 通讯作者: E-mail: luying@scau.edu.cn
  • 作者简介:秦海龙,男,1991年生,硕士研究生. 主要从事土壤资源管理方面的研究. E-mail: 838311678@qq.com
  • 基金资助:
    本文由国家科技基础性工作专项重点项目(2014FY110200)和国家自然科学基金项目(41271233)资助

Soil C:N:P stoichiometry at different altitudes in Mao’er Mountain, Guangxi, China.

QIN Hai-long1, FU Xuan-xuan2, LU Ying1,3*, WEI Xiang-hua2, LI Bo1, JIA Chong-jian1, JIANG Kun1   

  1. 1College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China;
    2College of Agriculture, Guangxi University, Nanning 530002, Guangxi, China;
    3Guangdong Provincial Key Laboratory of Land Use and Consolidation, Guangzhou 510642, China
  • Received:2018-08-21 Online:2019-03-20 Published:2019-03-20
  • Supported by:
    This work was supported by the Special Project of National Science and Technology Basic Research (2014FY110200) and the National Natural Science Foundation of China (41271233).

摘要: 为探究我国华南地区山地土壤有机碳(C)、氮(N)、磷(P)含量垂直分布特征,阐明土壤C、N、P生态化学计量特征对海拔和土层深度的响应,以广西猫儿山为研究对象,选取不同海拔的10个地点,采集了不同发生层的土壤,测定有机C、N、P、pH、容重和机械组成等土壤性质,探讨了不同海拔及深度土壤C、N、P生态化学计量特征及其影响因素.结果表明: 随着海拔升高,土壤C、N、C/P、N/P均呈增加趋势,土壤P呈先增后降趋势,C/N则呈先增后保持平稳趋势;随着土壤深度增加,土壤C、N、P、C/P、N/P均呈显著降低趋势,C/N无显著变化,C、N在不同发生层土壤间具有较高的耦合性(C/N变异系数为4.0%);土壤P在空间上的变异较小(不同海拔、发生层间变异系数分别为31.0%和22.0%).冗余分析结果显示,前2个排序轴反映了土壤C、N、P化学计量特征变异信息量的74.8%,土壤pH、容重和海拔对土壤C、N、P化学计量特征有显著影响,而黏粒、粉粒和砂粒影响效果不显著.

Abstract: We explored vertical distribution of soil organic carbon (C), nitrogen (N) and phosphorus (P) for examining the relationship between soil C:N:P stoichiometry and both altitudes and soil depths in Mao’er Mountain in Guangxi, South China. A total of ten sites from different altitudes were selected and soil genetic horizon samples were collected along soil profiles at each site. Soil organic C, N, P, pH, bulk density and particle size composition were measured. Results showed that soil C, N, C/P ratio and N/P ratio increased with the increases of altitude. Soil P concentrations and C/N ratio increased within low altitudes then decreased or with no obvious changes. Soil C, N, P, C/P and N/P ratios significantly decreased, whereas C/N ratio did not change with the increases of soil depth. Soil C and N highly coupled within horizons (CV of C/N was 4.0%) and soil P had little spatial variability (CV were 31.0% and 22.0% within altitudes and horizons, respectively). The results from redundancy analysis showed that the first two axes explained 74.8% of the variability of C:N:P stoichiometry. Soil pH, bulk density, and altitude had significant effects on C:N:P stoichiometry, whereas clay, silt, and sand had no effect.