欢迎访问《应用生态学报》官方网站,今天是 分享到:

应用生态学报 ›› 2017, Vol. 28 ›› Issue (3): 821-828.doi: 10.13287/j.1001-9332.201703.038

• 目次 • 上一篇    下一篇

气候变化对东北地区玉米生产潜力的影响与调控措施模拟——以吉林省为例

陈明1, 寇雯红1, 李玉环1*, 毛伟兵1, 孙翠珊1, 陈士更2   

  1. 1土肥资源高效利用国家工程实验室/山东农业大学, 山东泰安 271018
    2山东省农大肥业科技有限公司, 山东肥城 271600
  • 收稿日期:2016-07-06 发布日期:2017-03-18
  • 通讯作者: *E-mail: yuhuan@sdau.edu.cn
  • 作者简介:陈明,男,1992年生,硕士研究生.主要从事土地遥感与信息研究.E-mail:hilbo123@126.com
  • 基金资助:
    本文由山东省重点研发计划项目(2015GNC110010)和国家自然科学基金项目(41471184)资助

Impacts of climate change on maize potential productivity in Northeast China and the simulation of control measures: A case study of Jilin Province, China

CHEN Ming1, KOU Wen-hong1, LI Yu-huan1*, MAO Wei-bing1, SUN Cui-shan1, CHEN Shi-geng2   

  1. 1National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resuorces/Shandong Agricultural University,Tai’an 271018, Shandong, China
    2Shandong Agricultural University Fertilizer Technology Co., Ltd. Feicheng 271600, Shandong, China
  • Received:2016-07-06 Published:2017-03-18
  • Contact: *E-mail: yuhuan@sdau.edu.cn
  • Supported by:
    This work was supported by the Research and Development Program of Shandong Province (2015GNC110010), National Natural Science Foundation of China (41471184)

摘要: 本研究以我国吉林省为例,采用5个典型研究站点1981—2010年的气象观测数据、土壤数据、田间管理资料及玉米产量实测值,应用作物生长模型CERES-Maize对5个不同品种玉米生产潜力进行了模拟,在分析气候因素对生产力影响的基础上,模拟、校准与验证遗传参数,实现应对气候变化、提高作物生产力的调控技术模拟,以期指导作物生产.结果表明: 玉米播种-开花、开花-成熟两个生长阶段天数模拟值和单产的模拟值与实际值极为吻合,归一化均方根误差分别为2.96%、3.40%、9.37%,偏离指数范围为-10.6%~15.2%,玉米光温生产潜力模拟值年均为7799.60~12902.83 kg·hm-2,每10年下降128.6~880.3 kg·hm-2;相关性分析表明,影响该地区玉米光温生产潜力下降的主导因素是气候变化,即玉米生育期内温度升高造成的生长期缩短和太阳辐射总量的显著下降.据此模拟的主要调控技术分别是改良玉米品种的耐热性与推迟玉米播种期.遗传参数调控模拟结果表明,玉米光温生产潜力随品种敏感参数P5(灌浆期特征参数,指吐丝至生理成熟大于8 ℃的热量时间)值的增大而呈线性增加趋势,P5值每增加10 ℃·d,玉米光温生产潜力提高154.44~261.10 kg·hm-2.推迟玉米播期模拟结果表明,除梅河口外,敦化、辽源站点在玉米播期推迟5 d时,光温生产潜力增幅最大,分别为0.47%、1.32%;桦甸、榆树站点在玉米播期推迟15 d时,光温生产潜力增幅最大,分别为1.10%、4.06%.

Abstract: In this study, we collected data of meteorology, soil property, agricultural management and corn yield from five representative sites in Jilin Province, China, and integrated these data into a crop growth model of CERES-maize to simulate the potential productivity of five corn varieties. Our objectives were to simulate, calibrate and validate genetic parameters of the corns based on the analyses of climatic effects on the productivity, and to establish best practices for enhancing crop production in response to climatic change. The results showed that the projected days of sowing-flo-wering and flowering-maturing stages and yields of corn were well consistent with the measured va-lues with normalized mean variances being 2.96%, 3.40% and 9.37%, respectively, and the stan-dard deviation ranged from -10.6% to 15.2%. The mean projected light-temperature potential productivity (LTPP) of corns ranged from 7799.60 to 12902.83 kg·hm-2·a-1, which decreased by 128.6-880.3 kg·hm-2 every 10 years. The correlation analysis suggested that climate change, i.e. temperature rising and significant decline of total radiation during the growth of corns, dominated the decrease of LTPP of corns in the region. The simulated genetic parameters indicated that the LTPP of the corns increased linearly with the increase of P5 (filling stage characteristic parameter referred to silking to physiological maturity of more than 8 ℃ heat time). Our model estimated that the LTPP might increase 154.44-261.10 kg·hm-2 for every 10 ℃·d increase of P5. The simulated sowing date delay showed that five days’ sowing delay would maximize the LTPP of corns in Dunhua and Liaoyuan with 0.47% and 1.32% increase, respectively, while 15 days’ delay would maximize the LTPP in Huadian and Yushu with 1.10% and 4.06% increase, respectively.