欢迎访问《生态学杂志》官方网站,今天是 分享到:

生态学杂志 ›› 2011, Vol. 30 ›› Issue (03): 464-470.

• 研究报告 • 上一篇    下一篇

黄菖蒲和美人蕉对水深梯度的响应差异

柏祥1,2;陈开宁1**;黄蔚1;古小治1;陈效民2   

  1. 1中国科学院南京地理与湖泊研究所湖泊与环境国家重点实验室| 南京 210008;2南京农业大学资源与环境科学学院| 南京 210095
  • 出版日期:2011-03-08 发布日期:2011-03-08

Differential response of Iris pseudacorus and Canna incida to water depth gradient.

BAI Xiang1,2, CHEN Kai-ning1**, HUANG Wei1, GU Xiao-zhi1, CHEN Xiao-min2   

  1. 1State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China|2College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing 210095, China
  • Online:2011-03-08 Published:2011-03-08

摘要: 通过野外观测研究了黄菖蒲和美人蕉对水深梯度(10、30、50和70 cm)的适应性。结果表明: 随着水深的增加(1)黄菖蒲和美人蕉的分蘖数显著减少(P<0.05),但对株高、叶长和叶宽的影响不大;(2)2种植物叶片的叶绿素含量和根系活力均逐渐降低,叶片的丙二醛含量则逐渐升高,其中美人蕉的叶绿素含量、根系活力和叶片丙二醛含量的差异显著(P<0.05),而黄菖蒲仅根系活力的差异显著(P<0.05);(3)叶绿素荧光参数中,PSⅡ的最大光能转换效率(Fv/Fm)、表观电子传递速率(ETR)和光化学淬灭(qP)均呈显著下降的趋势(P<0.05),非光化学淬灭(qN)则显著增加(P<0.05);相对电子传递速率(rETR)及潜在最大电子传递速率(rETRm)、对光能的利用效率(α)和对强光的耐受能力(Ik)也都表现出明显的下降;美人蕉在10 cm水深条件下各指标均高于黄菖蒲,但在水深较大的条件下总体上低于黄菖蒲。可见,水深较大时对黄菖蒲和美人蕉的生长产生了抑制作用,且对后者的抑制程度要大于前者。因此,在选择黄菖蒲和美人蕉进行湿地植物修复时,应保持浅水条件以利于其生长,其中黄菖蒲适应的水深(30~70 cm)大于美人蕉(10 cm)。

关键词: 柑桔, 生态区划, 模糊, 决策系统

Abstract: Field investigation was conducted to study the adaptability of Iris pseudacorus and Canna incida to water depth gradient (10, 30, 50, and 70 cm). It was observed that with the increasing water depth, the tiller numbers of I. pesudacorus and C. incida decreased significantly (P<0.05), but the plant height, leaf length, and leaf width were less affected. Both the chlorophyll content and the root vigor of I. pseudacorus and C. incida decreased with increasing water depth, while the leaf MDA concentration was in adverse. The chlorophyll content, root vigor, and leaf MDA concentration of C. incida differed significantly among different water depths (P<0.05), but only the root vigor of I. pseudacorus had significant difference (P<0.05). Among the chlorophyll fluorescence parameters, the maximal light converting efficiency (Fv/Fm), apparent electron transfer rate (ETR), and photochemical quenching (qP) all decreased significantly with increasing water depth (P<0.05), while the non-photochemical quenching (qN) had a significant increase (P<0.05). The relative electron transfer rate (rETR), potential maximal rETR (rETRm), light use efficiency (α), and tolerance to intense light (Ik) all decreased obviously with increasing water depth. At water depth 10 cm, the values of all test indices were higher for C. incida than for I.pseudacorus; but at deeper water depths, an opposite trend was observed. It was found that deeper water depth had inhibitive effect on I. pseudacorus and C. incida, and the effect was greater on C. incida. Therefore, it should be kept in shallow water depth when using these two plants for wetland plant remediation in favor of the two plants’ growth. The appropriate water depth for I. pseudacorus and C. incida would be 30-70 cm and 10 cm, respectively.

Key words: Citrus, Ecological distribution, Fuzzy, Decision system