欢迎访问《生态学杂志》官方网站,今天是 分享到:

生态学杂志

• 研究报告 • 上一篇    下一篇

脉冲电场刺激对植物释放负离子的影响及其机理

吴仁烨1,2,郑金贵2*,翁海勇2,张万超3,邓传远3,叶大鹏4,王晴水2,孙缘芬2#br#   

  1. (1福建农林大学作物遗传育种与综合利用教育部重点实验室, 福州 350002; 2福建省特种作物育种与利用工程技术研究中心, 福州 350002; 3福建农林大学园林学院, 福州 350002; 4福建农林大学机电工程学院, 福州 350002)
  • 出版日期:2017-05-10 发布日期:2017-05-10

Influence of pulsed electrical fields on generation of negative air ions by plants and its mechanism.

WU Ren-ye1,2, ZHENG Jin-gui2*, WENG Hai-yong2, ZHANG Wan-chao3, DENG Chuan-yuan3, YE Da-peng4, WANG Qing-shui2, SUN Yuan-fen2#br#   

  1. (1Ministry of Education Key Laboratory for Crop Genetics, Breeding and Multiple Utilization of Crops, College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; 2 Fujian Engineering Technology Research Center of Breeding and Utilization for Special Crops, Fuzhou 350002, China; 3College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; 4College of Mechanical and Electronic Engineering, Fujian Agriculture and Forestry University, Fuzhou 350002, China).
  • Online:2017-05-10 Published:2017-05-10

摘要: 在自然状态下,植物释放负离子的能力很弱,而当施加脉冲电场刺激时,其释放能力显著提高。为研究在施加脉冲电场作用下植物释放负离子的机理,我们在测定星花凤梨(Guzmania lingulata)等10种植物常态释放负离子浓度的基础上,选取了常态下释放能力较强的君子兰(Clivia miniata)、金琥(Echinocactus grusonii)和吊兰(Chlorophytum comosum),研究其在脉冲电场作用下释放负离子的情况。结果表明:(1)不同参数的脉冲电场对植物释放负离子的能力影响不同,每种植物分别具有高效释放负离子的最佳参数的脉冲电场,君子兰为A4B4C4(A4:U=2.0×104 V,B4:T=2.0 s,C4:τ=90 ms);金琥为A4B1C3(A4:U=2.0×104 V,B1:T=0.5 s,C3: τ=65 ms);吊兰为A3B1C2(A3:U=1.5×104 V,B1: T=0.5 s,C2:τ=35 ms)。(2)植物体上的电压越大,植物释放负离子的能力越强(P<0.05)。(3)随着光照度的增强,植物释放负离子的能力显著提高(P<0.05)。(4)植物释放负离子的能力与植物叶片气孔特征关系密切,气孔的开合度、气孔的密度越大植物释放负离子的能力就越强(P<0.05)。植物释放负离子是一个复杂的生理过程,并非受单一因素影响,而是脉冲电场、光照和植物体特征等多种因素综合作用的结果。

关键词: 土壤重金属, 半方差函数, 空间变异, 稻田, 相关性分析, 克里格插值, 土壤养分

Abstract: In natural condition, the capacity of plants to generate negative air ions (NAIs) is very weak. However, a pulsed electrical field can result in a substantial improvement of the capacity in NAI generation. To investigate the mechanism underlying NAI generation by plant following the pulsed electrical field stimulation, the present study examined the generation of NAI in Clivia miniata, Echinocactus grusonii, and Chlorophytum comosum among the ten tested plant species (Guzmania lingulata etc) in the  presence of a pulsed electrical field, which possess strong capacity of generating NAI under natural conditions. The results showed that various parameters of pulsed electrical field affected the generation of NAI in the plants. Each plant had its own optimal pulsed electrical field with combination of parameters for the efficient generation of NAI: C. miniata with A4B4C4 (A4,U = 2.0×104 V; B4, T=2.0 s; C4, τ=90 ms), E. grusonii with A4B1C3 (A4, U=2.0×104 V; B1, T=0.5 s; C3, τ = 65 ms) and C. comosum with A3B1C2 (A3,U=1.5×104 V; B1, T=0.5 s; C2, τ=35 ms). With the application of a pulsed electrical field to a plant, the higher voltage in the plant, the greater capacity of NAI generation was (P<0.05). With the enhancement of light intensity, the ability of the plant to generate NAI significantly increased (P<0.05). A plant’s capacity of NAI generation was closely related to the characteristics of leaf stomata. Greater degree of stomatal opening and stomatal density facilitated a stronger ability of the plant to generate NAI (P<0.05). In sum, these results suggested that NAI generation by plants was a complex physiological process that was influenced by several factors, including the presence of pulsed electrical field stimulation, light intensity, and plant characteristics.

Key words: soil heavy metal, semi-variance, paddy field, spatial variation, correlation analysis., soil nutrient, kriging interpolation