欢迎访问《应用生态学报》官方网站,今天是 分享到:

应用生态学报 ›› 2019, Vol. 30 ›› Issue (6): 1815-1822.doi: 10.13287/j.1001-9332.201906.007

• 稳定同位素生态学专栏 • 上一篇    下一篇

马尾松稳定碳同位素(δ13C)的地理变异及其对水热因子的响应

张振1, 金国庆1, 周志春1,*, 丰忠平2, 孙林山3   

  1. 1中国林业科学研究院亚热带林业研究所, 国家林业局马尾松工程技术研究中心, 浙江省林木育种技术研究重点实验室, 杭州 311400;
    2浙江省淳安县姥山林场, 浙江淳安 311700;
    3湖北太子山林场管理局, 湖北京山 431822
  • 收稿日期:2018-10-23 出版日期:2019-06-15 发布日期:2019-06-15
  • 通讯作者: * E-mail: zczhou@fy.hz.zj.cn
  • 作者简介:张振,男,1986年生,博士,助理研究员. 主要从事林木遗传改良研究. E-mail: zhenzh19860516@163.com
  • 基金资助:
    国家自然科学基金项目(31600533)和浙江省林木育种专项(2016C02056-4)资助

Geographical variation and the response to hydrothermal factor of stable carbon isotope (δ13C) in Pinus massoniana.

ZHANG Zhen1, JIN Guo-qing1, ZHOU Zhi-chun1,*, FENG Zhong-ping2, SUN Lin-shan3   

  1. 1Research Institute of Subtropical Forestry, Chinese Academy of Forestry, State Forestry Administration Engineering Research Center of Masson Pine, Zhejiang Provincial Key Laboratory of Tree Breeding, Hangzhou 311400, China;
    2Laoshan Forest Farm, Chun’an 311700, Zhejiang, China;
    3Taizishan Forest Farm Administration, Jingshan 431822, Hubei, China
  • Received:2018-10-23 Online:2019-06-15 Published:2019-06-15
  • Supported by:
    This work was supported by the National Natural Science Foundation of China (31600533), and the Zhejiang Science and Technology Major Program on Agricultural New Variety Breeding (2016C02056-4)

摘要: 利用设置在浙江省淳安县姥山林场和湖北省太子山石龙林场2个试验点的33年生马尾松种源试验林,选取不同纬度的10个代表性种源,研究其在种源间的差异、地理变异模式及对水热因子的响应.结果表明: 马尾松平均年轮δ13C在种源间的差异极显著,高纬度种源的平均年轮δ13C高于低纬度种源.马尾松年轮δ13C呈纬向的地理变异模式,形成了对种源原地环境的适应性.年轮δ13C与种源地年均温(MAT)、1月均温(T1)、年降水量(MAP)、5—9月降水量(P5-9)及≥10 ℃年积温(CT)均呈显著或极显著负相关,与干燥度指数(AI)呈显著正相关.淳安和太子山点马尾松年轮δ13C对种源地干燥度指数的响应函数可分别解释年轮δ13C变化的37.5%和42.5%,种源地AI是年轮δ13C适应性的重要环境限制因子.马尾松稳定碳同位素δ13C的年际变化与生长环境关系密切,湖北太子山试验点处于相对干旱的中西部地区,干燥度指数高,平均年轮δ13C比淳安试验点高1.8%.太子山点和淳安点的马尾松年轮δ13C分别对7月和8月的气温响应敏感,夏季降水量是年轮稳定碳同位素分馏的主要限制因子,而不同种源对未来气候变化的响应敏感性不同.

Abstract: We used 10 representative provenances at different latitudes in two 33-year-old Pinus massoniana provenance test stands (Chun’an Laoshan in Zhejiang and Taizi Mountain Shilong in Hubei) to measure the differences among provenances, study the geographical variation, and identify its responses to hydrothermal factors. The results showed that the δ13C of the average annual rings was significantly different among the provenances of P. massoniana, being higher in trees from high latitude than from low latitude. The δ13C of average annual rings showed a zonal variation trend, indicating an adaptation to the original environment. The δ13C of annual rings was negatively correlated with mean annual temperature (MAT), mean temperature in January (T1), annual precipitation (MAP), precipitation from May to September (P5-9) and cumulative temperature above 10 ℃ (CT). It was positively correlated with the aridity index (AI). The response function of AI toδδ13C annual rings in Chun’an and Taizi Mountain explained 37.5% and 42.5% of the variation, respectively, indicating that AI was the most important limiting factor. The Taizi Mountain test site in Hubei Province located in the central and western region with relatively dry soil and high aridity. Therefore, the δ13C of the average annual ring was 1.8% higher than that in the Chun’an test site. The δ13C rings of P. massoniana at the Taizi Mountain and Chun’an were sensitive to the temperature in July and August, respectively. Summer precipitation was the main factor for carbon isotope fractionation with stable rings. The sensitivity of different provenances to future climate changes was different.