Welcome to Chinese Journal of Applied Ecology! Today is Share:

Chinese Journal of Applied Ecology

Previous Articles     Next Articles

Response of leaf anatomical characteristics of Cyclobalanopsis gilva seedlings to drought stress.

WU Li-jun, LI Zhi-hui, YANG Mo-hua, WANG Pei-lan   

  1. (College of Forestry, Central South University of Forestry and Technology, Changsha 410004, China)
  • Online:2015-12-18 Published:2015-12-18

Abstract: In this study, the leaf anatomical characteristics and transpiration rate of one-year-old seedlings from three study areas including Qingyuan of Zhejiang Province, Dongkou and Jingzhou of Hunan Province were investigated using a pot planting experiment in which relative soil water content was kept as 75%-80% (control), 55%-60% (mild drought stress), 45%-50% (moderate drought stress), 30%-35% (severe drought stress), respectively. The results showed that drought stress significantly reduced the total thickness of the seedling leaves, the thickness of their upper and lower epidermis and the thickness of palisade tissue. The ratio of  the palisade tissue to spongy tissue, stomatal length and width also decreased significantly, while the stomatal density increased significantly as the drought stress became more intense. The treatments of drought stress had no significant effect on the thickness of the main veins of the leaves although their xylem thickness varied depending on the seedlings from the different study sites. The change of leaf structure caused the change of  physiological function. As drought stress was intensified, the transpiration rate of C. gilva seedlings decreased significantly. The ratio of the palisade tissue to spongy tissue, the thickness of the lower epidermis and stomatal density of the seedlings from Dongkou of Hunan Province were significantly greater, while the transpiration rate was significantly lower than those from other two study sites for all the drought stress treatments, implying that the C. gilva seedlings from Dongkou of Hunan Province had a stronger drought-resistance ability.