Welcome to Chinese Journal of Applied Ecology! Today is Share:

Chinese Journal of Applied Ecology ›› 2019, Vol. 30 ›› Issue (8): 2607-2613.doi: 10.13287/j.1001-9332.201908.013

Previous Articles     Next Articles

Time lag of stem sap flow and its relationships with transpiration characteristics in Quercus liaotungensis and Robina pseudoacacia in the loess hilly region, China

YANG Jie1,2, LYU Jin-lin2,3, HE Qiu-yue1,2, YAN Mei-jie2,3, LI Guo-qing2,3, DU Sheng2,3*   

  1. 1College of Forestry, Northwest A&F University, Yangling 712100, Shaanxi, China;
    2State Key Laboratory of Soil Erosion and Dryland Farming on Loess Plateau, Northwest A&F University, Yangling 712100, Shaanxi, China;
    3Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling 712100, Shaanxi, China.

  • Received:2019-03-05 Online:2019-08-15 Published:2019-08-15
  • Contact: * E-mail: shengdu@ms.iswc.ac.cn

Abstract: Using Granier-type thermal dissipation probes (TDP), we measured stem xylem sap flow of the natural dominant species Quercus liaotungensis and a reforestation species Robinia pseudoacacia from July to September in 2016 in the semiarid loess hilly region. Meteorological factors and soil water content were simultaneously monitored during the study period. Using cross-correlation analysis, time lag between diurnal patterns of sap flux density and vapor pressure deficit (VPD) was quantitatively estimated. Differences in the time lag between the two species and possible influence by different diameter classes and soil water contents were analyzed. The results showed that the diurnal courses of sap flux density were similar to those of meteorological factors, with daily peaks ear-lier than VPD. The peak of VPD lagged behind the sap flux densities of Q. liaotungensis and R. pseudoacacia 118.2 min and 39.5 min, respectively. The peak of PAR lagged behind the sap flux density of Q. liaotungensis 12.4 min, but was 68.5 min ahead of that for R. pseudoacacia. Time lag between sap flux density and VPD significantly varied between tree species and was affected by soil water content. Those during higher soil water content period were about 32.2 min and 68.2 min longer than those during the period with lower soil water content for the two species, respectively. There was no correlation between time lag and tree diameter classes. The time lag between VPD and sap flux density for R. pseudoacacia was about 21.4 min longer in smaller diameter trees than in larger trees, which was significantly different under the lower soil water content. Our results suggested that the time lag effect between VPD and sap flux densities in the two species reflected their sensitivities to driving factors of transpiration, and that higher soil water content was favorable to sap flux density reaching its peak early. The lower soil water content might lead to lower sensitivity of the trees to meteorological factors. R. pseudoacacia was more sensitive to changes of soil water content.