Welcome to Chinese Journal of Applied Ecology! Today is Share:

Chinese Journal of Applied Ecology ›› 2022, Vol. 33 ›› Issue (2): 517-526.doi: 10.13287/j.1001-9332.202202.033

Previous Articles     Next Articles

Effects of electron acceptor and light on the abundance of microbial function gene related to soil CH4 emission

CHEN Juan1, HU Lin-yu1, LU Peng-wei1, JIANG Yu-mei1*, ZHANG Zhi-bin1, ZENG Qing-gui1, JIAN Min-fei1, ZHU Du1,2   

  1. 1Jiangxi Province Key Laboratory of Protection and Utilization of Subtropical Plant Resources, College of Life Sciences, Jiangxi Normal University, Nanchang 330022, China;
    2Jiangxi Province Key Laboratory of Bioprocess Engineering, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang 330013, China
  • Received:2021-04-08 Revised:2021-11-17 Online:2022-02-15 Published:2022-08-15

Abstract: To explore the effects of different electron acceptors on soil methane emission and responses of soil microorganisms to different light conditions, a strict anaerobic 20-day incubation experiment was conducted with eight treatments: darkness + Fe3+ (DF); darkness + NO3- (DN); darkness +SO42- (DS); darkness + distilled water (DCK); light + Fe3+ (LF); light + NO3- (LN); light +SO42- (LS); light + distilled water (LCK). The changes of methane concentration in the anaerobic incubation flask and the variation of the abundance of bacteria, archaea, fungi and six soil functional genes were analyzed. Results showed that soil methane emission under NO3-, SO42- addition and control (CK) was significantly lower under light conditions than dark, except the Fe3+ treatment. DN, DCK and LF treatments had the highest abundance of bacteria, fungi and archaea genes, respectively. The gene abundance of methanogenic mcrA, sulfate-reducing bacteria Dsr, and carbon-fixing CbbL were significantly up-regulated in the LF, while that of methanotrophs pmoA, iron-reducing bacteria Geo, and denitrifying bacteria nosZ were significantly up-regulated in the LN, DCK and LCK, respectively. Results of Pearson correlation and RDA analysis showed that CH4 emission was significantly positively correlated with CO2 concentration, pH, ammonium-nitrogen, and total N contents, and negatively correlated with N2O concentration, Eh, nitrate, and total C contents. Under dark condition, methane emission was positively correlated with archaea and pmoA genes abundance, and negatively correlated with other genes abundance. Under light condition, methane emission was negatively correlated with the abundance of soil microbe and functional genes. In general, methane emission under light condition was significantly lower than that under dark condition (except for the Fe3+ treatment). These results showed that it was helpful to reduce methane emission under light condition, but the increase or decrease of methane emission was closely related to the type of electron acceptors and the functional responses of soil micro-organisms

Key words: electron acceptor, wetland soil, methane emission, illumination, abundance of functional genes