Welcome to Chinese Journal of Applied Ecology! Today is Share:

Chinese Journal of Applied Ecology ›› 2022, Vol. 33 ›› Issue (5): 1175-1182.doi: 10.13287/j.1001-9332.202205.002

• Original Articles • Previous Articles     Next Articles

Effects of mixing proportions on carbon storage and allocation in mixed plantation of Larix olgensis and Fraxinus mandshurica

YAN Jia-jie, LI Feng-ri, XIE Long-fei, MIAO Zheng, DONG Li-hu*   

  1. Ministry of Education Key Laboratory of Sustainable Forest Ecosystem Management, School of Forestry, Northeast Forestry University, Harbin 150040, China
  • Received:2021-09-16 Accepted:2021-12-03 Online:2022-05-15 Published:2022-11-15

Abstract: In this study, four types of mixed Larix olgensis and Fraxinus mandshurica plantations were selected according to the rows-mixing proportions (type Ⅰ: 5:3, type Ⅱ: 6:4, type Ⅲ: 5:5, type Ⅳ: 1:1). The see-mingly unrelated biomass models of L. olgensis and F. mandshurica were developed for obtaining biomass values, and the difference and composition of carbon storage in each forest layer and ecosystem were analyzed. The results showed that carbon storage of arbor layer in different stand types was 39.86-50.12 t·hm-2, the carbon storage of arbor layer inⅠ, Ⅱ and Ⅳ was significantly higher than that in type Ⅲ. The carbon storage of understory was 0.10-0.30 t·hm-2, with that in type Ⅱ being significantly higher than other types. Carbon storage of litter layer was 4.43-6.96 t·hm-2, with type Ⅱ and Ⅲ being significantly higher than those of the other types. In the soil layer, carbon storage was 34.97-54.66 t·hm-2. The carbon storage of soil layer in type Ⅱ was significantly greater than those in the other types. At the whole ecosystem level, carbon storage of type Ⅰ-Ⅳ was 90.43, 108.27, 85.83 and 89.92 t·hm-2, respectively. Type Ⅱ had significantly greater carbon storage than the other types. The arbor layer and soil layer were the major carbon pools in the ecosystem, which accounted for 43.3%-55.7% and 38.7%-50.5% of the total, respectively. Our results suggested that mixing by six rows of L. olgensis and four rows of F. mandshurica was better for future planting.

Key words: Larix olgensis, Fraxinus mandshurica, mixing proportion, carbon storage