Welcome to Chinese Journal of Applied Ecology! Today is Share:

Chinese Journal of Applied Ecology ›› 2023, Vol. 34 ›› Issue (3): 577-587.doi: 10.13287/j.1001-9332.202302.006

Previous Articles     Next Articles

Effects of phyllotaxy on variation and inner relationships of leaflet traits in compound-leaved plants

GUO Yu, JIN Guangze, LIU Zhili*   

  1. Northeast Asia Biodiversity Research Center, Ministry of Education Key Laboratory of Sustainable Forest Ecosystem Management, Center for Ecological Research, Northeast Forestry University, Harbin 150040, China
  • Received:2022-09-25 Accepted:2022-12-14 Published:2023-09-15

Abstract: To understand the distribution pattern of leaflet traits in compound-leaved along with phyllotaxy, we selected three compound-leaved trees with opposite phyllotaxy in Xiaoxing’ an Mountains, Fraxinus mandshurica, Phellodendron amurense, Juglans mandshurica, as the research objects. We measured leaf thickness, leaf area, specific leaf area, leaf dry matter content, palisade tissue thickness, spongy tissue thickness, ratio of palisade tissue thickness to spongy tissue thickness, and carbon content, nitrogen content, phosphorus content of leaflets at different phyllotaxy positions. We analyzed the variation of leaflet traits with phyllotaxy and the influence of phyllotaxy on the inner relationships between leaflet traits. The results showed that the variation of leaflet area, leaflet dry matter content, spongy tissue thickness and ratio of palisade tissue thickness to spongy tissue thickness with the increase of phyllotaxy were mainly divided into three types: increase, decrease, first increase and then decrease. Leaflet thickness, specific leaflet area, palisade tissue thickness, as well as nutrient contents did not change with phyllotaxy. Within compound leaves of three species, the variation coefficients and plasticity index of leaflet thickness, leaflet area, specific leaflet area, leaflet dry matter content, palisade tissue thickness, spongy tissue thickness, ratio of palisade tissue thickness to spongy tissue thickness ranged from 6.1% to 28.6% and from 0.14 to 0.70, respectively. Phyllotaxy had a significant effect on the bivariate correlation between leaflet traits. Specific leaflet area and leaflet dry natter content were negatively correlated in different phyllotaxy positions of F. mandshurica and J. mandshurica. Leaflet nitrogen content and phosphorus content showed a positive correlation in different phyllotaxy positions of F. mandshurica and P. amurense. The first and secondary leaflets (the first leaflets farthest from the base of the petiole) of J. mandshurica showed a conservative strategy, while the seventh and eighth leaflets showed an acquisition strategy. Leaflets of F. mandshurica and P. amurense did not show different ecological strategies.

Key words: compound leaf, phyllotaxy, leaflet trait