Welcome to Chinese Journal of Applied Ecology! Today is Share:

Chinese Journal of Applied Ecology ›› 2023, Vol. 34 ›› Issue (4): 1002-1008.doi: 10.13287/j.1001-9332.202304.012

• Original Articles • Previous Articles     Next Articles

Density and row spacing of short-season cotton suitable for machine picking in the cotton region of Yellow River Basin

LI Fengrui, ZHAO Wenchao, ZHANG Donglou, DONG Lingyan, WANG Ruming, QI Hongxin, ZHANG Chao, ZHANG Guijun, YANG Xiufeng, SHI Jialiang*   

  1. Acadmy of Agriculture Science of Dezhou City, Dezhou 253015, Shandong, China
  • Received:2022-09-13 Accepted:2023-02-09 Online:2023-04-15 Published:2023-10-15

Abstract: To determine the suitable planting density and row spacing of short-season cotton suitable for machine picking in the Yellow River Basin of China, we conducted a two-year field experiment in Dezhou during 2018-2019. The experiment followed a split-plot design, with planting density (82500 plants·hm-2 and 112500 plants·hm-2) as the main plots and row spacing (equal row spacing of 76 cm, wide-narrow row spacing of 66 cm+10 cm, equal row spacing of 60 cm) as the subplots. We examined the effects of planting density and row spacing on growth and development, canopy structure, seed cotton yield and fiber quality of short-season cotton. The results showed that plant height and LAI under high density treatment were significantly greater than those under low density treatment. The transmittance of the bottom layer was significantly lower than under low density treatment. Plant height under 76 cm equal row spacing was significantly higher than that under 60 cm equal row spacing, while that under wide-narrow row spacing (66 cm +10 cm) was significantly smaller than that under 60 cm equal row spacing in peak bolling stage. The effects of row spacing on LAI varied between the two years, densities, and growth stages. On the whole, the LAI under the wide-narrow row spacing (66 cm+10 cm) was higher, with the curve declining gently after the peak, and it was higher than that in the two cases of equal row spacing in the harvest time. The change in transmittance of the bottom layer presented the opposite trend. Density, row spacing, and their interaction had significant effects on seed cotton yield and its components. In both years, seed cotton yield was the highest (3832 kg·hm-2 in 2018, 3235 kg·hm-2 in 2019) under wide-narrow row spacing (66 cm+10 cm), and it was more stable at high densities. Fiber quality was less affected by density and row spacing. To sum up, the optimal density and row spacing of short-season cotton were as follows: density with 112500 plants·hm-2 and wide-narrow row spacing (66 cm+10 cm).

Key words: Demian 15, planting density, row spacing, canopy structure, seed cotton yield, fiber quality