Welcome to Chinese Journal of Applied Ecology! Today is Share:

Chinese Journal of Applied Ecology

Previous Articles     Next Articles

Effects of irrigation of untreated livestock farm wastewater on accumulation and vertical migration of nitrogen and phosphorus in paddy soil.

ZHANG Ming-kui, AHMED Elgodah, BAO Chen-yan   

  1. (College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310029, China)
  • Online:2014-12-18 Published:2014-12-18

Abstract: Although a series of process techniques for treating wastewater from livestock and poultry breeding have been developed in China and overseas, it is still common in China’s rural areas for utilization of the untreated wastewater to irrigate farmland directly because of economic reasons. The impact of untreated wastewater irrigation on accumulation and vertical migration of nitrogen and phosphorus in paddy soil is concerned. Consequently, four representative paddy fields with different histories of livestock farm wastewater irrigation (0, 4, 7, 13 years) were selected for collecting profile soil samples to study the effects of long-term irrigation of untreated livestock farm wastewater on various forms of nitrogen and phosphorus in the soils at different vertical depths. As compared with control field without any irrigation of wastewater, long-term irrigation of untreated livestock farm wastewater significantly increased the accumulation of N and P in the soils with increasing the irrigation year, and the increment of total P in the soil was greater than that of total N. Total P content in surface soil from fields with 4, 7, and 13 years irrigation was increased by 43.6%, 95.2%, and 148.4%, while total N increased by 7.6%, 16.9%, and 28.4%, respectively. Different forms of soil N were increased in order of NH4+-N, NO3--N > acid hydrolyzable N > non-acid hydrolyzable N, and soil available P changed much more than total P. Long-term irrigation of untreated livestock farm wastewater could promote vertical migration of soil nitrogen and phosphorus, and increase the pollution risk for groundwater.