Welcome to Chinese Journal of Applied Ecology! Today is Share:

Chinese Journal of Applied Ecology ›› 2016, Vol. 27 ›› Issue (3): 697-704.doi: 10.13287/j.1001-9332.201603.036

• contents • Previous Articles     Next Articles

Evolution pattern of phytolith-occluded carbon in typical forest-soil ecosystems in tropics and subtropics, China

HE Shan-qiong1, HUANG Zhang-ting1, WU Jia-sen1,2, YANG Jie1, JIANG Pei-kun1,2*   

  1. 1School of Environmental and Resource Sciences, Zhejiang A&F University, Lin’an 311300, Zhejiang, China;
    2Zhejiang Province Key Laboratory of Carbon Cycling in Forest Ecosystems and Carbon Sequestration, Zhejiang Agriculture and Forestry University, Lin’an 311300, Zhejiang, China
  • Received:2015-08-18 Online:2016-03-18 Published:2016-03-18
  • Contact: * E-mail: jiangpeikun@zafu.edu.cn
  • Supported by:
    This work was supported by the National Natural Science Foundation of China (31270667)

Abstract: Samples of fresh leaves and leaf litter, as well as soils taken from 0-10 and 10-30 cm layers, were collected in four types of typical forest ecosystems both in subtropical (Phyllostachys pubescens, Pinus massoniana, Cycloba lanopsisglauca, and Cunninghamia lanceolata stands) and in tropical climates (Vatica mangachapoi, Musa basjoo, Heveabrasiliensis, and Acacia mangium stands) for measurement of PhytOC (phytolith-occluded organic carbon) contents. The phytoliths in both leaves and soil samples were extracted by a microwave digestion method and their PhytOC contents were determined by alkali dissolution-spectrophotometry method. It was found that, among the four types of subtropical forests, the PhytOC contents of leaves, litter and 0-10 cm soil layer were the highest in P. massoniana stand (230.24, 229.17 and 20.87 g·kg-1), the lowest in P. pubescens stand (30.55, 37.37, and 3.38 g·kg-1), and the PhytOC content of the 10-30 cm soil layer was the highest in C. glauca stand (18.54 g·kg-1), and the lowest in P. pubescens stand (2.90 g·kg-1). For the four tropical forests, A. mangium stand (377.66 g·kg-1) and V. mangachapoi stand (46.83 g·kg-1), respectively, deposited the highest and lowest contents of PhytOC in the leaves, while the highest and lowest contents of PhytOC in the litter were observed in H. brasiliensis stand (218.23 g·kg-1) and M. basjoo stand (27.66 g·kg-1), respectively. Also among the tropical forests, the highest PhytOC contents in the 0-10 cm and 10-30 cm soil layers were observed in A. mangium stand (23.84 and 24.90 g·kg-1), while the lowest values occurred in M. basjoo stand (3.89 and 3.93 g·kg-1). The PhytOC contents in transitioning from leaves to soils (0-10 cm layers) decreased by 97.4% for C. lanceolata, 94.9% for C. glauca, 90.9% for P. massoniana, and 88.9% for P. pubescens in the subtropics, and by 95.9% for H. brasiliensis, 93.7% for A. mangium, 93.3% for M. basjoo, 63.7% for V. mangachapoi in the tropics. There was no significant difference in PhytOC contents between leaves and litter for the following five forest types: P. pubescens, P. massoniana, C. lanceolata, V. mangachapoi and H. brasiliensis. However, significantly higher PhytOC contents in leaves than in litters were measured in C. glauca, M. basjoo, and A. mangium. The findings that significantly lower PhytOC contents occurred in soils than in fresh leaves and leaf litter regardless of type of forest ecosystem suggested that phytolith was not stable during the pathway from plants to soil via the forest litter.