Chinese Journal of Applied Ecology ›› 2020, Vol. 31 ›› Issue (10): 3255-3266.doi: 10.13287/j.1001-9332.202010.037
• Special Features of Plant Protection • Previous Articles Next Articles
TIAN Ye-han, PENG Hai-ying, WANG De-hao, LI Xiao-fang, HE Bang-ling, GAO Ke-xiang*
Received:
2019-12-30
Accepted:
2020-07-16
Online:
2020-10-15
Published:
2021-04-15
Contact:
* E-mail: kxgao63@163.com
Supported by:
TIAN Ye-han, PENG Hai-ying, WANG De-hao, LI Xiao-fang, HE Bang-ling, GAO Ke-xiang. Biocontrol potential of Talaromyces purpurogenus and its regulation on soil microbial community[J]. Chinese Journal of Applied Ecology, 2020, 31(10): 3255-3266.
[1] 杨亚东, 王志敏, 曾昭海. 长期施肥和灌溉对土壤细菌数量、多样性和群落结构的影响. 中国农业科学, 2018, 51(2): 290-301 [Yang Y-D, Wang Z-M, Zeng Z-H. Effects of long-term different fertilization and irrigation managements on soil bacterial abundance, diversity and composition. Scientia Agricultura Sinica, 2018, 51(2): 290-301] [2] Kennedy AC, Smith KL. Soil microbial diversity and the sustainability of agricultural soils. Plant and Soil, 1995, 170: 75-86 [3] 黄新琦, 蔡祖聪. 土壤微生物与作物土传病害控制. 中国科学院院刊, 2017, 32(6): 593-600 [Huang X-Q, Cai Z-C. Soil microorganism and soil borne disease control of crops. Bulletin of Chinese Academy of Sciences, 2017, 32(6): 593-600] [4] 李天来, 杨丽娟. 作物连作障碍的克服——难解的问题. 中国农业科学, 2016, 49(5): 916-918 [Li T-L, Yang L-J. Overcoming continuous cropping obstacles—The difficult problem. Scientia Agricultura Sinica, 2016, 49(5): 916-918] [5] 姚小东, 李孝刚, 丁昌峰, 等. 连作和轮作模式下花生土壤微生物群落不同微域分布特征.土壤学报, 2019, 56(4): 975-985 [Yao X-D, Li X-G, Ding C-F, et al. Microzone distribution characteristics of soil microbial community with peanut cropping system, monocropping or rotation. Acta Pedologica Sinica, 2019, 56(4): 975-985] [6] 王小兵, 骆永明, 李振高, 等. 长期定位施肥对红壤地区连作花生生物学性状和土传病害发生率的影响. 土壤学报, 2011, 48(4): 725-730 [Wang X-B, Luo Y-M, Li Z-G, et al. Effects of long-term stationary fertilization experiment on incidence of soil-borne diseases and biological characteristics of peanut in continuous monocropping system in red soil area. Acta Pedologica Sinica, 2011, 48(4): 725-730] [7] 沈宗专, 孙莉, 王东升, 等. 石灰碳铵熏蒸与施用生物有机肥对连作黄瓜和西瓜枯萎病及生物量的影响. 应用生态学报, 2017, 28(10): 3351-3359 [Shen Z-Z, Sun L, Wang D-S, et al. Effects of lime-ammonium bicarbonate fumigation and biofertilizer application on Fusarium wilt and biomass of continuous cropping cucumber and watermelon. Chinese Journal of Applied Ecology, 2017, 28(10): 3351-3359] [8] 刘海洋, 姚举, 张仁福, 等. 黄萎病不同发生程度棉田中土壤微生物多样性. 生态学报, 2018, 38(5): 1619-1629 [Liu H-Y, Yao J, Zhang R-F, et al. Verticillium wilt has different degrees of soil microbial diversity in cotton fields. Acta Ecologica Sinica, 2018, 38(5): 1619-1629] [9] 马艳, 胡安忆, 杨豪, 等. 菜粕生物熏蒸防控辣椒疫病. 中国农业科学, 2013, 46(22): 4698-4706 [Ma Y, Hu A-Y, Yang H, et al. Effects of biofumigation with rapeseed meal on disease control of Phytophthora blight of chilli pepper. Scientia Agricultura Sinica, 2013, 46(22): 4698-4706] [10] 张洁, 夏明聪, 刘红彦, 等. 低剂量棉隆熏蒸联合生物菌肥防治黄瓜根结线虫病的应用效果. 植物保护学报, 2019, 46(4): 824-831 [Zhang J, Xia M-C, Liu H-Y, et al. Efficacy of dazomet fumigation and bioorganic fertilizer in integrated control of cucumber root-knot. Journal of Plant Protection, 2019, 46(4): 824-831] [11] Mohamad O, Li L, Ma JB, et al. Evaluation of the antimicrobial Activity of endophytic bacterial populations from Chinese traditional medicinal plant licorice and characterization of the bioactive secondary metabolites produced by Bacillus atrophaeus against Verticillium dahliae. Frontiers in Microbiology, 2018, 9: 924 [12] Castillo AG, Puig CG, Cumagun C. Non-synergistic effect of Trichoderma harzianum and Glomus spp. in reducing infection of Fusarium wilt in banana. Pathogens, 2019, 8: 43, doi: 10.3390/pathogens8020043 [13] Abbasi S, Safaie N, Sadeghi A, et al. Streptomyces strains induce resistance to Fusarium oxysporum f. sp. lycopersici race 3 in tomato through different molecular mechanisms. Frontiers in Microbiology, 2019, 10: 1505, doi: 10.3389/fmicb.2019.01505 [14] Jiang CH, Yao XF, Mi DD, et al. Comparative transcriptome analysis reveals the biocontrol mechanism of Bacillus velezensis F21 against Fusarium wilt on watermelon. Frontiers in Microbiology, 2019, 10: 652, doi: 10.3389/fmicb.2019.00652 [15] Shi L, Du NS, Shu S, et al. Paenibacillus polymyxa NSY50 suppresses Fusarium wilt in cucumbers by regulating the rhizospheric microbial community. Scientific Reports, 2017, 7: 41234, doi: 10.1038/srep41234 [16] Chen ZD, Huang RK, Li QQ, et al. Development of pathogenicity and AFLP to characterize Fusarium oxysporum f. sp. momordicae isolates from bitter gourd in China. Journal of Phytopathology, 2015, 163: 202-211 [17] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 烟草病虫害分级及调查方法(GB/T 23222—2008). 北京: 中国标准出版社, 2008 [General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, National Standardization Administration of China. Grade and Investigation Method of Tobacco Disease (GB/T 23222-2008). Beijing: China Standards Press, 2008] [18] Weinhold AR. Rhizoctonia disease of potato: Effect on yield and control by seed tuber treatment. Plant Disease, 1982, 66: 815, doi: 10.1094/pd-66-815 [19] 高克祥, 田叶韩, 刘晓光, 等. 一株防治苦瓜枯萎病的拮抗真菌及其应用, 中国, ZL201610959637.2. 2016-10-27 [Gao K-X, Tian Y-H, Liu X-G, et al. An antagonistic fungi against Fusarium wilt of bitter gourd and its application. China, ZL201610959637.2. 2016-10-27] [20] Mardones W, Callegari E, Eyzaguirre J. Corncob and sugar beet pulp induce specific sets of lignocellulolytic enzymes in Penicillium purpurogenum. Mycology, 2018, 10: 118-125 [21] 牛玉静, 曹红, 黄晓林, 等. 复合诱变Penicillium purpurogenum Li-3选育高产红色素及其生物活性研究. 中国酿造, 2017, 36(3): 30-34 [Niu Y-J, Cao H, Huang X-L, et al. Screening of high red pigment-producing Penicillium purpurogenum Li-3 by compound mutagenese and its biological activity. China Brewing, 2017, 36(3): 30-34] [22] Santos-Ebinuma VC, Roberto IC, Simas TMF, et al. Improving of red colorants production by a new Penicillium purpurogenum strain in submerged culture and the effect of different parameters in their stability. Biotechnology Progress, 2013, 29: 778-785 [23] Dita M, Barquero M, Heck D, et al. Fusarium wilt of banana: Current knowledge on epidemiology and research needs toward sustainable disease management. Frontiers in Plant Science, 2018, 9: 1468, https://doi: org/10.3389/fpls.2018.01468 [24] Li XG, Zhang YN, Ding CF, et al. Declined soil suppressiveness to Fusarium oxysporum by rhizosphere microflora of cotton in soil sickness. Biology and Fertility of Soils, 2015, 51: 935-946 [25] Shen ZZ, Penton CR, Lyu NN, et al. Banana Fusarium wilt disease incidence is influenced by shifts of soil microbial communities under different monoculture spans. Microbial Ecology, 2017, 75: 739-750 [26] Garbeva P, Van Veen JA, Van Elsas JD. Microbial diversity in soil: Selection of microbial populations by plant and soil type and implications for disease suppressiveness. Annual Review of Phytopathology, 2004, 42: 243-270 [27] Shen ZZ, Xue C, Penton CR, et al. Suppression of banana Panama disease induced by soil microbiome reconstruction through an integrated agricultural strategy. Soil Biology and Biochemistry, 2018, 128: 164-174 [28] 贲海燕, 石延霞, 谢学文, 等. 氰氨化钙土壤消毒对黄瓜根腐病及土壤病原菌的控制效果. 园艺学报, 2016, 43(11): 2173-2181 [Ben H-Y, Shi Y-X, Xie X-W, et al.Studies of soil improvement effect of calcium cyanamide and its control efficiency on soil-borne diseases of vegetable crops. Acta Horticulturae Sinica, 2016, 43(11): 2173-2181] [29] 卜东欣, 张超, 张鑫, 等. 熏蒸剂威百亩对土壤微生物数量和酶活性的影响. 中国农学通报, 2014, 30(15): 227-233 [Bu D-X, Zhang C, Zhang X, et al. Effects of fumigant metham-sodium on soil microbial population and enzyme activities. Chinese Agricultural Science Bulletin, 2014, 30(15): 227-233] |
[1] | WU Sixuan, GAO Fuyun, ZHANG Ruipeng, SU Hao, YAO Huaiying, FAN Xuelian, LI Yaying. Research progress in biological control of tomato bacterial wilt [J]. Chinese Journal of Applied Ecology, 2023, 34(9): 2585-2592. |
[2] | DING Shuang, WEI Shengzhao, CHEN Zhenliang, SHAO Jing, DUAN Fengrui, YAN Yu, DUAN Xingwu. Variation characteristics of microorganisms at different soil depths of typical forests in southwest China. [J]. Chinese Journal of Applied Ecology, 2023, 34(3): 614-622. |
[3] | YANG Gui-sen, ZHANG Zhi-shan, ZHAO Yang, SHI Ya-fei, HU Rui. Litter decomposition and its effects on soil microbial community in Shapotou area, China [J]. Chinese Journal of Applied Ecology, 2022, 33(7): 1810-1818. |
[4] | YANG Ya-li, MA Xue-song, XIE Hong-tu, BAO Xue-lian, LIANG Chao, ZHU Xue-feng, HE Hong-bo, ZHANG Xu-dong. Effects of conservation tillage on soil microbial community and the function of soil carbon cycling [J]. Chinese Journal of Applied Ecology, 2021, 32(8): 2675-2684. |
[5] | SUN Yi-fan, LIU Zhe, LI Hai-yang, ZHENG Ze-hao, JI Cheng-long, GUO Qiao, LAI Hang-xian. Biocontrol effect and mechanism of Bacillus laterosporus Bl13 against early blight disease of tomato [J]. Chinese Journal of Applied Ecology, 2021, 32(1): 299-308. |
[6] | WANG Jian-cai, ZHU Rong-sheng, LIU Xing-hua, SUN Shou-li, WANG Huai-zhong, TANG Qian, QI Bo, HUANG Bao-hua. Effects of microbial agents on bacterial community composition during swine manure composting [J]. Chinese Journal of Applied Ecology, 2020, 31(7): 2449-2456. |
[7] | FU Min, HAO Min-min, HU Heng-yu, DING Wen-chao, ZHAI Ming-zhen, ZHANG Hai-yi. Responses of soil organic carbon and microbial community structure to different tillage patterns and straw returning for multiple years. [J]. Chinese Journal of Applied Ecology, 2019, 30(9): 3183-3194. |
[8] | DUAN Peng-fei, CHEN Yan, ZHANG Fei, HAN Hui, PANG Fa-hu, CHEN Zhao-jin, TIAN Wei. Effect of Miscanthus planting on the structure and function of soil bacterial community. [J]. Chinese Journal of Applied Ecology, 2019, 30(6): 2030-2038. |
[9] | LI Wei-cheng, SHENG Hai-yan, CHEN Wei-jie, LIU Yao-yao, ZHANG Rui, WEN Xing. Variation of soil bacterial diversity after the invasion of Phyllostachys edulis into Pinus massoniana forest [J]. Chinese Journal of Applied Ecology, 2018, 29(12): 3969-3976. |
[10] | HAO Qin-qin, SHI Rong-jiu, HAO Jin-sheng, ZHAO Jin-yi, LI Guo-qiao, ZHAO Feng, HAN Si-qin, ZHANG Ying. Characterization of microbial community in produced water from a petroleum reservoir subjected to alkali-surfactant-polymer ASP flooding [J]. Chinese Journal of Applied Ecology, 2017, 28(10): 3393-3402. |
[11] | HAN Shi-zhong1, GAO Ren1,2, LI Ai-ping1, MA Hong-liang1,2, YIN Yun-feng1,2, SI You-tao1,2, CHEN Shi-dong1,2, ZHENG Qun-rui3. Soil microbial community structure of two types of forests in the mid-subtropics of China. [J]. Chinese Journal of Applied Ecology, 2015, 26(7): 2151-2158. |
[12] | LYU Heng1,2, NIU Yong-chun2, DENG Hui2, LIN Xiao-min1, JIN Chun-li2. Suppression of three soil-borne diseases of cucumber by a rhizosphere fungal strain. [J]. Chinese Journal of Applied Ecology, 2015, 26(12): 3759-3765. |
[13] | YANG Kai, YAO Xiao-yan, CHEN Chen, SHEN Chao-feng, QIN Zhi-hui, HUANG Rong-lang. Microbial anaerobic dechlorination of polychlorinated biphenyls in paddy soil slurry. [J]. Chinese Journal of Applied Ecology, 2015, 26(10): 3083-3090. |
[14] | QIU Jing-ping1, HUANG Yan-xia2, WANG Chao2, YU Yi-yang2, KE Hong-jiao2, GUO Jian-hua2. Effects of bacterial consortium EG03 on control of pepper bacterial wilt and rhizosphere microbial community characteristics in fields. [J]. Chinese Journal of Applied Ecology, 2014, 25(5): 1468-1474. |
[15] | ZHANG Si-hai1, HUANG Jian1, LUO Zheng-rong1, DONG Shuguang1, WANG Yi-kun1, ZHU Qiang-gen1, ZHANG Long1, JIN Ai-wu1. Effect of adding different amounts of wheat straw and phosphorus on soil microorganism community. [J]. Chinese Journal of Applied Ecology, 2014, 25(3): 797-802. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 67
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 492
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||