Chinese Journal of Applied Ecology ›› 2020, Vol. 31 ›› Issue (10): 3349-3356.doi: 10.13287/j.1001-9332.202010.009
• Original Articles • Previous Articles Next Articles
XI Dan1, YU Ze-ping2, XIONG Yong2, LIU Xiao-yu1, LIU Jun3*
Received:
2020-05-06
Accepted:
2020-07-28
Online:
2020-10-15
Published:
2021-04-15
Contact:
* E-mail: ljaim99@163.com
Supported by:
XI Dan, YU Ze-ping, XIONG Yong, LIU Xiao-yu, LIU Jun. Altitudinal changes of soil organic carbon fractions of evergreen broadleaved forests in Guanshan Mountain, Jiangxi, China[J]. Chinese Journal of Applied Ecology, 2020, 31(10): 3349-3356.
[1] Lai R. Soil carbon sequestration impacts on global climate change and food security. Science, 2004, 304: 1623-1627 [2] Parton WJ, Schimel DS, Cole CV, et al. Analysis of factors controlling soil organic matter levels in Great Plains grasslands. Soil Science Society of America Journal, 1987, 51: 1173-1179 [3] 赵鑫, 宇万太, 李建东, 等. 不同经营管理条件下土壤有机碳及其组分研究进展. 应用生态学报, 2006, 17(11): 2203-2209 [Zhao X, Yu W-T, Li J-D, et al. Research advances in soil organic carbon and its fractions under different management patterns. Chinese Journal of Applied Ecology, 2006, 17(11): 2203-2209] [4] 向慧敏, 温达志, 张玲玲, 等. 鼎湖山森林土壤活性碳及惰性碳沿海拔梯度的变化. 生态学报, 2015, 35(18): 6089-6099 [Xiang H-M, Wen D-Z, Zhang L-L, et al. Altitudinal changes in active and recalcitrant soil carbon pools of forests in the Dinghu Mountains. Acta Ecologica Sinica, 2015, 35(18): 6089-6099] [5] 柳杨, 何先进, 侯恩庆. 鼎湖山森林演替和海拔梯度上的土壤微生物生物量碳氮变化. 生态学杂志, 2017, 36(2): 287-294 [Liu Y, He X-J, Hou E-Q. Changes in microbial biomass carbon and nitrogen in forest floor litters and mineral soils along forest succession and altitude gradient in subtropical China. Chinese Journal of Ecology, 2017, 36(2): 287-294] [6] 秦海龙, 付旋旋, 卢瑛, 等. 广西猫儿山不同海拔土壤碳氮磷生态化学计量特征. 应用生态学报, 2019, 30(3): 711-717 [Qin H-L, Fu X-X, Lu Y, et al. Soil C:N:P stoichiometry at different altitudes in Mao' er Mountain, Gunagxi, China. Chinese Journal of Applied Ecology, 2019, 30(3): 711-717] [7] Zhang M, Zhang XK, Liang WJ, et al. Distribution of soil organic carbon fractions along the altitudinal gra-dient in Changbai Mountain, China. Pedosphere, 2011, 21: 615-620 [8] 徐侠, 陈月琴, 汪家社, 等. 武夷山不同海拔高度土壤活性有机碳变化. 应用生态学报, 2008, 19(3): 539-544 [Xu X, Chen Y-Q, Wang J-S, et al. Variations of soil labile organic carbon along an altitude gra-dient in Wuyi Mountain. Chinese Journal of Applied Eco-logy, 2008, 19(3): 539-544] [9] 宫立, 刘国华, 李宗善, 等. 川西卧龙岷江冷杉林土壤有机碳组分与氮素关系随海拔梯度的变化特征. 生态学报, 2017, 37(14): 4696-4705 [Gong L, Liu G-H, Li Z-S, et al. Altitudinal changes in nitrogen, organic carbon, and its labile fractions in different soil layers in an Abies faxoniana forest in Wolong. Acta Ecologica Sinica, 2017, 37(14): 4696-4705] [10] 向成华, 栾军伟, 骆宗诗, 等. 川西沿海拔梯度典型植被类型土壤活性有机碳分布. 生态学报, 2010, 30(4): 1025-1034 [Xiang C-H, Luan J-W, Luo Z-S, et al. Labile soil organic carbon distribution on influenced by vegetation types along an elevation gradient in west Sichuan, China. Acta Ecologica Sinica, 2010, 30(4): 1025-1034] [11] 赵盼盼, 周嘉聪, 林开淼, 等. 不同海拔对福建戴云山黄山松林土壤微生物生物量和土壤酶活性的影响. 生态学报, 2019, 39(8): 2676-2686 [Zhao P-P, Zhou J-C, Lin K-M, et al. Effects of different altitudes on soil microbial biomass and enzyme activities in Pinus taiwanensis forests on Daiyun Mountain, Fujian Pro-vince. Acta Ecologica Sinica, 2019, 39(8): 2676-2686] [12] 符方艳, 陆宏芳. 城市化对南亚热带常绿阔叶林土壤生物群落结构的影响. 生态环境学报, 2015, 24(6): 938-946 [Fu F-Y, Lu H-F. Effects of urbanization on soil community structure under subtropical evergreen broad-leaved forests. Ecology and Environmental Sciences, 2015, 24(6): 938-946] [13] 徐定兰, 余泽平, 王国兵, 等. 江西官山常绿阔叶林监测样地: 灌木多样性及空间计量特征. 江西农业大学学报, 2018, 40(5): 1001-1011 [Xu D-L, Yu Z-P, Wang G-B, et al. Shrub species diversity and spatial characteristics in Guanshan evergreen broad-leaved forest monitoring plot (GSP). Acta Agriculturae Universitatis Jiangxiensis, 2018, 40(5): 1001-1011] [14] 刘鹏, 张微微. 官山自然保护区白颈长尾雉季节性生境选择. 生态学报, 2017, 37(18): 6005-6013 [Liu P, Zhang W-W. Seasonal changes in habitat selection of Syrmaticus ellioti in Guanshan National Nature Reserve. Acta Ecologica Sinica, 2017, 37(18): 6005-6013] [15] 曹岚, 梁芳, 邹红, 等. 江西官山国家级自然保护区珍稀植物多样性研究. 安徽农业科学, 2012, 40(3): 1696-1698 [Cao L, Liang F, Zou H, et al. Study on the diversity of rare and endangered plants in Guanshan Nature Reserve of Jiangxi Province. Journal of Anhui Agricultural Sciences, 2012, 40(3): 1696-1698] [16] Blair GJ, Lefroy RDB, Lisle L. Soil carbon fractions based on their degree of oxidation, and the development of a carbon management index for agricultural systems. Australian Journal of Agricultural Research, 1995, 46: 1459-1466 [17] 刘光崧, 蒋能慧, 张连第, 等. 土壤理化分析与剖面描述. 北京: 中国标准出版社, 1996 [Liu G-S, Jiang N-H, Zhang L-D, et al. Soil Physical and Chemical Analysis & Description of Soil Profiles. Beijing: China Standards Press, 1996] [18] 张厚喜, 林丛, 程浩, 等. 武夷山不同海拔梯度毛竹林土壤有机碳特征及影响因素. 土壤, 2019, 51(4): 821-828 [Zhang H-X, Lin C, Cheng H, et al. Variation of soil organic carbon content of moso bamboo forest along altitudinal gradient in Wuyi Mountain in China. Soils, 2019, 51(4): 821-828] [19] Longbottom TL, Townsend-Small A, Owen LA, et al. Climatic and topographic controls on soil organic matter storage and dynamics in the Indian Himalaya: Potential carbon cycle-climate change feedbacks. Catena, 2014, 119: 125-135 [20] 杨丽韫, 罗天祥, 吴松涛. 长白山原始阔叶红松林不同演替阶段地下生物量与碳、氮贮量的比较. 应用生态学报, 2005, 16(7): 1195-1199 [Yang L-Y, Luo T-X, Wu S-T. Root biomass and underground C and N storage of primitive Korean pine and broad-leaved climax forest in Changbai Mountains at its different succession stages. Chinese Journal of Applied Ecology, 2005, 16(7): 1195-1199] [21] Wiesmeier M, Prietzel J, Barthold F, et al. Storage and drivers of organic carbon in forest soils of southeast Germany (Bavaria): Implications for carbon sequestration. Forest Ecology and Management, 2013, 295: 162-172 [22] Zeng Z, Wang S, Zhang C, et al. Soil microbial activity and nutrients of evergreen broad-leaf forests in mid-subtropical region of China. Journal of Forestry Research, 2015, 26: 673-678 [23] Fang CM, Smith P, Moncrieff JB, et al. Similar response of labile and resistant soil organic matter pools to changes in temperature. Nature, 2005, 433: 57-59 [24] Knorr W, Prentice IC, House JI, et al. Long-term sensitivity of soil carbon turnover to warming. Nature, 2005, 433: 298-301 [25] Fontaine S, Bardoux G, Abbadie L, et al. Carbon input to soil may decrease soil carbon content. Ecology Letters, 2004, 7: 314-320 [26] 习丹, 旷远文. 城市化梯度上亚热带常绿阔叶林土壤有机碳及其组分特征. 应用生态学报, 2018, 29(7): 2149-2155 [Xi D, Kuang Y-W. Characteristics of soil organic carbon and its fractions in subtropical evergreen broad-leaved forests along an urbanization gradient. Chinese Journal of Applied Ecology, 2018, 29(7): 2149-2155] [27] Taneva L, Pippen JS, Schlesinger WH, et al. The turnover of carbon pools contributing to soil CO2 and soil respiration in a temperate forest exposed to elevated CO2 concentration. Global Change Biology, 2006, 12: 983-994 [28] 习丹, 旷远文. 广州城郊森林公园常绿阔叶林土壤有机碳及组分特征. 生态科学, 2019, 38(1): 226-232 [Xi D, Kuang Y-W. Characteristics of soil organic carbon and its components in evergreen broadleaved forests of suburban forest parks in Guangzhou. Ecological Science, 2019, 38(1): 226-232] [29] Vieira FC, Bayer BC, Zanatta JA, et al. Carbon mana-gement index based on physical fractionation of soil organic matter in an Acrisol under long-term no-till cropping systems. Soil and Tillage Research, 2007, 96: 195-204 [30] 李佩擎, 方向民, 陈伏生, 等. 南昌城乡梯度绿地土壤水溶性有机碳变异及其对温度的响应特征. 应用生态学报, 2015, 26(11): 3398-3404 [Li P-Q, Fang X-M, Chen F-S, et al. Variability of soil water soluble organic carbon content and its response to temperature change in green spaces along urban-to-rural gradient of Nanchang, China. Chinese Journal of Applied Ecology, 2015, 26(11): 3398-3404] [31] Zhou Y, Clark M, Su J, et al. Litter decomposition and soil microbial community composition in three Korean pine (Pinus koraiensis) forests along an altitudinal gradient. Plant and Soil, 2014, 386: 171-183 |
[1] | QIN Zhenkai, LIU Runhong, HE Peng, WANG Cong, NIE Yanxia, SHEN Weijun. Effects of mixed broadleaved tree species with pure Pinus massoniana plantation on soil microbial necromass carbon and organic carbon fractions [J]. Chinese Journal of Applied Ecology, 2024, 35(1): 141-152. |
[2] | WU Xinyang, SHAO Jing, CHEN Xiaoping, LI Jinlong, HU Dandan, ZHONG Quanlin, CHENG Dongliang. Nutrient content and resorption efficiency of leaves of broad-leaved trees along altitudes in Wuyi Mountains, China [J]. Chinese Journal of Applied Ecology, 2023, 34(9): 2305-2313. |
[3] | WEI Kaili, LIANG Xiaoping, YU Jingjing, WANG Lin, ZHOU Liangjun, LYU Zhonghai, ZHANG Minghai, ZHANG Weiqi. Effects of plant community and altitude on food composition of Cervus elaphus wallichii during the withered grass period on the Tibetan Plateau, China [J]. Chinese Journal of Applied Ecology, 2023, 34(4): 1117-1122. |
[4] | TAN Yibo, ZHANG Tong, JIANG Xingjian, SHEN Wenhui, YE Jianping. Altitudinal variation pattern in Daphniphyllum macropodum leaf traits and influencing environmental factors in Mao’er Mountain, China [J]. Chinese Journal of Applied Ecology, 2023, 34(12): 3223-3231. |
[5] | LIU Qianyu, WANG Ranghu, WU Xinjie, DOU Yongjing. Responses of taxonomic and functional diversity of soil mites to altitudinal changes in forest ecosystems of Lyuliang Mountains, Shanxi, China [J]. Chinese Journal of Applied Ecology, 2023, 34(12): 3301-3312. |
[6] | LIU Min-xia, ZHANG Guo-juan, LI Liang, MU Ruo-lan, XU Lu, YU Rui-xin. Relationship between functional diversity and ecosystem multifunctionality of alpine meadow along an altitude gradient in Gannan, China [J]. Chinese Journal of Applied Ecology, 2022, 33(5): 1291-1299. |
[7] | SHI Shuai-ying, DING Xi-ning, WANG Zhan-chao, GUO Xiang-feng, ZHANG Gai-na, HU Yong-hong, SHI Guo-an. Grain oil quality formation and metabolism-related genes difference expression of Paeonia suffruticosa cv. ‘Fengdan' grown at different altitudes. [J]. Chinese Journal of Applied Ecology, 2022, 33(11): 2987-2996. |
[8] | WAN Hong-yun, CHEN Lin, PANG Dan-bo, MA Jin-peng, CHEN Gao-lu, LI Xue-bin. Soil enzyme activities and their stoichiometry at different altitudes in Helan Mountains, Northwest China [J]. Chinese Journal of Applied Ecology, 2021, 32(9): 3045-3052. |
[9] | ZHOU Yu-jie, JIA Xia, ZHAO Yong-hua, CHEN Nan-nan, YAN Jin, TANG Jian-qiu, WANG Xi, LIU Li. Altitude distribution of fungal community in Huoditang in Qinling Mountains, Northwest China [J]. Chinese Journal of Applied Ecology, 2021, 32(7): 2589-2596. |
[10] | WANG Yu-ping, GAO Hui-hui, ZHANG Feng, CHEN Li-xiang, SUN Wen-bin. Altitudinal phenotypic plasticity of leaf characteristics of Polygonum viviparum [J]. Chinese Journal of Applied Ecology, 2021, 32(6): 2070-2078. |
[11] | LI Jian-hao, TAO Jian-bin, CHENG Bo, WU Qi-fan, PENG Hong-jie. Sensitivity of spring phenology to elevation in Qinling Mountains, China [J]. Chinese Journal of Applied Ecology, 2021, 32(6): 2089-2097. |
[12] | DING Zhang-qi, XU Guo-rui, ZHANG Shuang, ZHANG Yu-xin, MA Ke-ming. Scaling laws of altitudinal pattern of soil fauna diversity in Dongling Mountain, Beijing, China [J]. Chinese Journal of Applied Ecology, 2021, 32(12): 4272-4278. |
[13] | GAO Jia-ni, YANG Bao, QIN Chun. Response of intra-annual stem radial growth to drought events: A case study of Pinus tabuliformis in the Helan Mountains, China [J]. Chinese Journal of Applied Ecology, 2021, 32(10): 3505-3511. |
[14] | WANG Shi-jie, CHEN You-ping, CHEN Feng, ZHANG He-li. Responses of radial growth of Pinus yunnanensis to climatic and hydrological factors at different altitudes in Western Yunnan, China [J]. Chinese Journal of Applied Ecology, 2021, 32(10): 3557-3566. |
[15] | LIU Lan-ya, GOU Xiao-hua, ZHANG Fen, YIN Ding-cai, WANG Xue-jia, XIA Jing-qing, LI Qian, DU Miao-miao. Effects of warming on radial growth of Picea crassifolia in the eastern Qilian Mountains, China [J]. Chinese Journal of Applied Ecology, 2021, 32(10): 3576-3584. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 199
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 482
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||