Chinese Journal of Applied Ecology ›› 2023, Vol. 34 ›› Issue (10): 2861-2870.doi: 10.13287/j.1001-9332.202310.013
• Reviews • Previous Articles Next Articles
WANG Xiao1,3, LIANG Siwei2, TIAN Yijia1,3, LIU Xiaotong1,3, LIANG Wenju1, ZHANG Xiaoke1*
Received:
2023-04-06
Accepted:
2023-08-16
Online:
2023-10-15
Published:
2024-04-15
WANG Xiao, LIANG Siwei, TIAN Yijia, LIU Xiaotong, LIANG Wenju, ZHANG Xiaoke. Application of stable isotope techniques in soil food web research[J]. Chinese Journal of Applied Ecology, 2023, 34(10): 2861-2870.
[1] 窦永静, 常亮, 吴东辉. 土壤动物食物网研究方法. 生态学杂志, 2015, 34(1): 247-255 [2] Oliverio AM, Geisen S, Delgado-Baquerizo M, et al. The global-scale distributions of soil protists and their contributions to belowground systems. Science Advances, 2020, 6: eaax8787 [3] Phillips HRP, Guerra CA, Bartz MLC, et al. Global distribution of earthworm diversity. Science, 2019, 366: 480-485 [4] van den Hoogen J, Geisen S, Routh D, et al. Soil nema-tode abundance and functional group composition at a global scale. Nature, 2019, 572: 194-198 [5] Scheu S, Folger M. Single and mixed diets in Collembola: Effects on reproduction and stable isotope fractionation. Functional Ecology, 2004, 18: 94-102 [6] Schneider K, Maraun M. Top-down control of soil microarthropods: Evidence from a laboratory experiment. Soil Biology & Biochemistry, 2009, 41: 170-175 [7] Ponge JF. Vertical distribution of Collembola (Hexapoda) and their food resources in organic horizons of beech forests. Biology and Fertility of Soils, 2000, 32: 508-522 [8] 高红秀, 韩岚岚, 赵奎军. 应用分子方法进行捕食者中肠分析的研究进展. 东北农业大学学报, 2007, 38(2): 253-257 [9] Potapov AM, Beaulieu F, Birkhofer K, et al. Feeding habits and multifunctional classification of soil-associated consumers from protists to vertebrates. Biological Reviews, 2022, 97: 1057-1117 [10] Jiang Y, Wang ZH, Wu Y, et al. The effect of auxin status driven by bacterivorous nematodes on root growth of Arabidopsis thaliana. Applied Soil Ecology, 2023, 182: 104730 [11] Song AL, Zhang JY, Xu DY, et al. Keystone microbial taxa drive the accelerated decompositions of cellulose and lignin by long-term resource enrichments. Science of the Total Environment, 2022, 842: 156814 [12] 赵伟春, 王光华, 程家安, 等. 弹尾虫单克隆抗体的制备及其在捕食研究中的应用. 生态学报, 2007, 27(9): 3694-3700 [13] 林光辉. 稳定同位素生态学. 北京: 高等教育出版社, 2013: 161-162 [14] Fry B. Food web structure on Georges Bank from stable C, N, and S isotopic compositions. Limnology and Oceanography, 1988, 33: 1182-1190 [15] Ponsard S, Arditi R. What can stable isotopes (δ15N and δ13C) tell about the food web of soil macro-invertebrates? Ecology, 2000, 81: 852-864 [16] Scheu S, Falca M. The soil food web of two beech forests (Fagus sylvatica) of contrasting humus type: Stable isotope analysis of a macro- and a mesofauna-dominated community. Oecologia, 2000, 123: 285-296 [17] Brussaard L, Behan-Pelletier VM, Bignell DE, et al. Biodiversity and ecosystem functioning in soil. Ambio, 1997, 26: 563-570 [18] Krantz GW, Walter DE. A Manual of A Carology. Corvallis, OR, USA: Oregon State University Book Stores Inc., 2009 [19] Halaj J, Peck RW, Niwa CG. Trophic structure of a macroarthropod litter food web in managed coniferous forest stands: A stable isotope analysis with δ15N and δ13C. Pedobiologia, 2005, 49: 109-118 [20] 杜晓芳, 李英滨, 刘芳, 等. 土壤微食物网结构与生态功能. 应用生态学报, 2018, 29(2): 403-411 [21] van der Heijden MGA, Bardgett RD, van Straalen NM. The unseen majority: Soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Eco-logy Letters, 2008, 11: 296-310 [22] 陈永亮, 陈保冬, 刘蕾, 等. 丛枝菌根真菌在土壤氮素循环中的作用. 生态学报, 2014, 34(17): 4807-4815 [23] Liu YY, Dong LZ, Zhang HJ, et al. Distinct roles of bacteria and fungi in mediating soil extracellular enzymes under long-term nitrogen deposition in temperate plantations. Forest Ecology and Management, 2023, 529: 120658 [24] Thakur MP, Geisen S. Trophic regulations of the soil microbiome. Trends in Microbiology, 2019, 27: 771-780 [25] 张薇, 宋玉芳, 孙铁珩, 等. 土壤线虫对环境污染的指示作用. 应用生态学报, 2004, 15(10): 1973-1978 [26] 吴纪华, 宋慈玉, 陈家宽. 食微线虫对植物生长及土壤养分循环的影响. 生物多样性, 2007, 15(2): 124-133 [27] Frouz J, Jilkova V, Cajthaml T, et al. Soil biota in post-mining sites along a climatic gradient in the USA: Simple communities in shortgrass prairie recover faster than complex communities in tallgrass prairie and forest. Soil Biology & Biochemistry, 2013, 67: 212-225 [28] Kim G, Jo H, Kim H, et al. Earthworm effects on soil biogeochemistry in temperate forests focusing on stable isotope tracing: A review. Applied Biological Chemistry, 2022, 65: 88 [29] Groffman PM, Fahey TJ, Fisk MC, et al. Earthworms increase soil microbial biomass carrying capacity and nitrogen retention in northern hardwood forests. Soil Biology & Biochemistry, 2015, 87: 51-58 [30] 卢明珠, 吕宪国, 管强, 等. 蚯蚓对土壤温室气体排放的影响及机制研究进展. 土壤学报, 2015, 52(6): 1209-1225 [31] de Castro F, Adl SM, Allesina S, et al. Local stability properties of complex, species-rich soil food webs with functional block structure. Ecology and Evolution, 2021, 11: 16070-16081 [32] Unkovich MJ, Pate JS, Mcneill A. Stable Isotope Techniques in the Study of Biological Processes and Functioning of Ecosystems. Dordrecht, Netherlands: Kluwer Academic Press, 2001: 1-18 [33] Hemmerling C, Li ZP, Shi LL, et al. Flux of root-derived carbon into the nematode micro-food web: A comparison of grassland and agroforest. Agronomy, 2022, 12: 976 [34] 葛体达, 王东东, 祝贞科, 等. 碳同位素示踪技术及其在陆地生态系统碳循环研究中的应用与展望. 植物生态学报, 2020, 44(4): 360-372 [35] 王辛辛, 刘岩, 张威, 等. 基于稳定性同位素核酸探针技术的红壤微生物底物利用策略研究. 土壤学报, 2022, 59(1): 274-284 [36] Morrissey EM, Mau RL, Schwartz E, et al. Bacterial carbon use plasticity, phylogenetic diversity and the priming of soil organic matter. ISME Journal, 2017, 11: 1890-1899 [37] Crotty FV, Adl SM, Blackshaw RP, et al. Protozoan pulses unveil their pivotal position within the soil food web. Microbial Ecology, 2012, 63: 905-918 [38] Kudrin AA, Tsurikov SM, Tiunov AV. Trophic position of microbivorous and predatory soil nematodes in a boreal forest as indicated by stable isotope analysis. Soil Biology & Biochemistry, 2015, 86: 193-200 [39] Maraun M, Thomas T, Fast E, et al. New perspectives on soil animal trophic ecology through the lens of C and N stable isotope ratios of oribatid mites. Soil Biology & Biochemistry, 2023, 177: 108890 [40] Endlweber K, Ruess L, Scheu S. Collembola switch diet in presence of plant roots thereby functioning as herbivores. Soil Biology & Biochemistry, 2009, 41: 1151-1154 [41] Ladygina N, Caruso T, Hedlund K. Dietary switching of Collembola in grassland soil food webs. Soil Biology & Biochemistry, 2008, 40: 2898-2903 [42] Deniro MJ, Epstein S. Influence of diet on distribution of carbon isotopes in animals. Geochimica et Cosmochi-mica Acta, 1978, 42: 495-506 [43] Traugott M, Kamenova S, Ruess L, et al. Empirically characterising trophic networks: What emerging DNA-based methods, stable isotope and fatty acid analyses can offer. Advances in Ecological Research, 2013, 49: 177-224 [44] Potapov AM, Tiunov AV, Scheu S. Uncovering trophic positions and food resources of soil animals using bulk natural stable isotope composition. Biological Reviews, 2019, 94: 37-59 [45] Tiunov AV. Stable isotopes of carbon and nitrogen in soil ecological studies. Biology Bulletin, 2007, 34: 395-407 [46] Pollierer MM, Langel R, Scheu S, et al. Compartmentalization of the soil animal food web as indicated by dual analysis of stable isotope ratios (15N/14N and 13C/14C). Soil Biology & Biochemistry, 2009, 41: 1221-1226 [47] Murase J, Hordijk K, Tayasu I, et al. Strain-specific incorporation of methanotrophic biomass into eukaryotic grazers in a rice field soil revealed by PLFA-SIP. FEMS Microbiology Ecology, 2011, 75: 284-290 [48] Murase J, Frenzel P. A methane-driven microbial food web in a wetland rice soil. Environmental Microbiology, 2007, 9: 3025-3034 [49] Melody C, Griffiths B, Dyckmans J, et al. Stable isotope analysis (δ13C and δ15N) of soil nematodes from four feeding groups. PeerJ, 2016, 4: e2372 [50] Estifanos TK, Traunspurger W, Peters L. Selective feeding in nematodes: A stable isotope analysis of bacteria and algae as food sources for free-living nematodes. Nematology, 2013, 15: 1-13 [51] Vafeiadou AM, Materatski P, Adao H, et al. Resource utilization and trophic position of nematodes and harpacticoid copepods in and adjacent to Zostera noltii beds. Biogeosciences, 2014, 11: 4001-4014 [52] Anslan S, Bahram M, Tedersoo L. Seasonal and annual variation in fungal communities associated with epigeic springtails (Collembola spp.) in boreal forests. Soil Biology & Biochemistry, 2018, 116: 245-252 [53] Coulibaly SFM, Winck BR, Akpa-Vinceslas M, et al. Functional assemblages of Collembola determine soil microbial communities and associated functions. Frontiers in Environmental Science, 2019, 7: 52 [54] Ferlian O, Klarner B, Langeneckert AE, et al. Trophic niche differentiation and utilisation of food resources in Collembolans based on complementary analyses of fatty acids and stable isotopes. Soil Biology & Biochemistry, 2015, 82: 28-35 [55] Hao C, de Jonge N, Zhu D, et al. Food origin influences microbiota and stable isotope enrichment profiles of cold-adapted Collembola (Desoria ruseki). Frontiers in Microbiology, 2022, 13: 1030429 [56] 徐国良, 王敏, 张卫信, 等. 土壤跳虫在碳循环中的作用——13C示踪研究. 生态环境学报, 2015, 24(7): 1103-1107 [57] Grabmaier A, Heigl F, Eisenhauer N, et al. Stable isotope labelling of earthworms can help deciphering belowground-aboveground interactions involving earthworms, mycorrhizal fungi, plants and aphids. Pedobiologia, 2014, 57: 197-203 [58] Schmidt O, Curry JP, Dyckmans J, et al. Dual stable isotope analysis (δ13C and δ15N) of soil invertebrates and their food sources. Pedobiologia, 2004, 48: 171-180 [59] Neutel AM, Heesterbeek J, Koppel J, et al. Reconciling complexity with stability in naturally assembling food webs. Nature, 2007, 449: 599-602 [60] Gellner G, McCann K. Reconciling the omnivory-stability debate. American Naturalist, 2012, 179: 22-37 [61] Post DM. Using stable isotopes to estimate trophic position: Models, methods, and assumptions. Ecology, 2002, 83: 703-718 [62] Minagawa M, Wada E. Stepwise enrichment of 15N along food-chains: Further evidence and the relation between δ15N and animal age. Geochimica et Cosmochimica Acta, 1984, 48: 1135-1140 [63] Chahartaghi M, Langel R, Scheu S, et al. Feeding guilds in Collembola based on nitrogen stable isotope ratios. Soil Biology & Biochemistry, 2005, 37: 1718-1725 [64] 王敏, 徐国良. 稳定同位素技术在土壤跳虫研究上的应用. 应用生态学报, 2013, 24(6): 1754-1760 [65] Krause A, Sandmann D, Bluhm SL, et al. Shift in trophic niches of soil microarthropods with conversion of tropical rainforest into plantations as indicated by stable isotopes (15N, 13C). PLoS One, 2019, 14: e224520 [66] Kou XC, Ma NN, Zhang XK, et al. Frequency of stover mulching but not amount regulates the decomposition pathways of soil micro-food webs in a no-tillage system. Soil Biology & Biochemistry, 2020, 144: 107789 [67] Cui SY, Liang SW, Zhang XK, et al. Long-term fertilization management affects the C utilization from crop residues by the soil micro-food web. Plant and Soil, 2018, 429: 335-348 [68] Pausch J, Kramer S, Scharroba A, et al. Small but active-pool size does not matter for carbon incorporation in below-ground food webs. Functional Ecology, 2016, 30: 479-489 [69] Kou XC, Morriën E, Tian YJ, et al. Exogenous carbon turnover within the soil food web strengthens soil carbon sequestration through microbial necromass accumulation. Global Change Biology, 2023, 29: 4069-4080 [70] Eissfeller V, Beyer F, Valtanen K, et al. Incorporation of plant carbon and microbial nitrogen into the rhizosphere food web of beech and ash. Soil Biology & Biochemistry, 2013, 62: 76-81 [71] Lummer D, Scheu S, Butenschoen O. Connecting litter quality, microbial community and nitrogen transfer mechanisms in decomposing litter mixtures. Oikos, 2012, 121: 1649-1655 [72] 胡锋, 李辉信, 武心齐, 等. 接种线虫对土壤-作物系统中肥料15N去向的影响. 南京农业大学学报, 1998, 21(4): 128-130 [73] 骆静梅. 秸秆还田对土壤线虫群落及其介导的氮转化过程的影响. 博士论文. 北京: 中国科学院大学, 2022 [74] Jiang H, Favaro E, Goulbourne CN, et al. Stable isotope imaging of biological samples with high resolution secondary ion mass spectrometry and complementary techniques. Methods, 2014, 68: 317-324 [75] Finzi-Hart JA, Pett-Ridge J, Weber PK, et al. Fixation and fate of C and N in the cyanobacterium Trichodes-mium using nanometer-scale secondary ion mass spectrometry. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106: 6345-6350 [76] Pett-Ridge J, Weber PK. NanoSIP: NanoSIMS applications for microbial biology. Methods in Molecular Biology, 2012, 881: 375-408 [77] Carpenter KJ, Weber PK, Davisson ML, et al. Correlated SEM, FIB-SEM, TEM, and NanoSIMS imaging of microbes from the hindgut of a lower termite: Methods for in situ functional and ecological studies of uncultivable microbes. Microscopy and Microanalysis, 2013, 19: 1490-1501 [78] Crotty FV, Stocki M, Knight JD, et al. Improving accuracy and sensitivity of isotope ratio mass spectrometry for δ13C and δ15N values in very low mass samples for ecological studies. Soil Biology & Biochemistry, 2013, 65: 75-77 [79] Langel R, Dyckmans J. Combined 13C and 15N isotope analysis on small samples using a near-conventional elemental analyzer/isotope ratio mass spectrometer setup. Rapid Communications in Mass Spectrometry, 2014, 28: 1019-1022 [80] Klarner B, Maraun M, Scheu S. Trophic diversity and niche partitioning in a species rich predator guild: Natural variations in stable isotope ratios (13C/12C, 15N/14N) of mesostigmatid mites (Acari, Mesostigmata) from Central European beech forests. Soil Biology & Biochemistry, 2013, 57: 327-333 [81] Chamberlain PM, Bull ID, Black H, et al. Lipid content and carbon assimilation in Collembola: Implications for the use of compound-specific carbon isotope analysis in animal dietary studies. Oecologia, 2004, 139: 325-335 [82] Rocci KS, Lavallee JM, Stewart CE, et al. Soil organic carbon response to global environmental change depends on its distribution between mineral-associated and parti-culate organic matter: A meta-analysis. Science of the Total Environment, 2021, 793: 148569 |
[1] | WEI Haoyan, LU Yanwei, LI Min, LI Peiyue, CHENG Wenqing, SI Bingcheng. Anomalous stable hydrogen-oxygen isotope characteristics and water vapor sources of autumn precipitation in the Weihe River basin, Northwest China [J]. Chinese Journal of Applied Ecology, 2023, 34(7): 1737-1744. |
[2] | GUO Rongpei, ZHANG Baihao, LI Nan, FANG Zhou. Seasonal differences of feeding ecology of Uroteuthis edulis in the East China Sea based on fatty acid and stable isotope [J]. Chinese Journal of Applied Ecology, 2023, 34(7): 1754-1762. |
[3] | DONG Shiqi, ZHANG Heye, SUN Guoqing, LI Lei, AN Wencong, ZHANG Yanchao, WANG Zhaoguo, GAO Dongkui, TIAN Tao, WU Zhongxin. Seasonal variations of macrozoobenthic community trophic structure in the waters adjacent to the seaweed beds of Dalian Island in the North Yellow Sea [J]. Chinese Journal of Applied Ecology, 2023, 34(7): 1763-1770. |
[4] | LIU Mingzhi, YANG Fan, JIANG Rijin, YIN Rui, WANG Jing, XIAO Yi, LING Ting, ZHU Shuailin. Trophic niche and potential carbon source of three reef-associated fishes of Zhongjieshan Islands [J]. Chinese Journal of Applied Ecology, 2023, 34(4): 1130-1136. |
[5] | WU Yingming, HAN Lu, LIU Keyan, HU Xu, FU Zhaoqi, CHEN Lixin. Water source of Robinia pseudoacacia and Platycladus orientalis plantations under different soil moisture conditions in the Loess Plateau of Western Shanxi, China [J]. Chinese Journal of Applied Ecology, 2023, 34(3): 588-596. |
[6] | WEI Haoyan, LU Yanwei, LI Min, HUA Yi, PAN Junzuo, ZHANG Ziyao. Comparison of meteoric water lines at different temporal scales and regression methods in inland monsoon region, Northwest China. [J]. Chinese Journal of Applied Ecology, 2023, 34(3): 657-663. |
[7] | LI Jiajie, ZHANG Xinping, XIAO Xiong, ZHANG Cicheng, WANG Rui, DAI Junjie, LUO Zidong, LIU Na. Mean transit time of water bodies in a typical soil-plant-atmosphere continuum of the subtropical monsoon region [J]. Chinese Journal of Applied Ecology, 2023, 34(12): 3184-3194. |
[8] | HU Xiaochuang, GAO Wanting, SUN Shoujia, ZHANG Jinsong, MENG Ping, CAI Jinfeng. Responses of tree growth and intrinsic water-use efficiency of Robinia pseudoacacia to climate factors [J]. Chinese Journal of Applied Ecology, 2023, 34(10): 2610-2618. |
[9] | WANG Bin, WANG Ru-zhen, ZHANG Ying, GU Bai-tao, LI Tian, ZHANG Yu-ge, JIANG Yong. Interannual variations in natural abundance of nitrogen stable isotopes in soil and plant and their implications in a meadow steppe [J]. Chinese Journal of Applied Ecology, 2022, 33(8): 2161-2170. |
[10] | GULHANAT·Bolatbek, CHANG Shun-li, BAHJAYNAR·Tiemerbek, ZHANG Yu-tao. Water sources of Picea schrenkiana and Berberis heteropoda in the Tianshan Mountains in summer [J]. Chinese Journal of Applied Ecology, 2022, 33(7): 1893-1900. |
[11] | LI Jia-qi, HUANG Ya-nan, SHI Pei-jun, LI Zhi. Isotopic characteristics and vapor sources of atmospheric precipitation in the loess region of North Shaanxi, China [J]. Chinese Journal of Applied Ecology, 2022, 33(6): 1459-1465. |
[12] | MIAO Jing, LIU Feng, YAN Fa-jun, LI Xian, DONG Jun, ZHU Yong-an, WANG Xin-jun, DONG Xiao-liang. Analysis of food sources of Eriocheir sinensis in rice-crab integrated ecosystem based on stable isotopes in saline-alkali land of the Yellow River Delta [J]. Chinese Journal of Applied Ecology, 2022, 33(6): 1489-1496. |
[13] | XU Wen, YANG Rui, CHEN Gan, GAO Chun-xia, YE Shen, HAN Dong-yan. Feeding ecology of Decapterus maruadsi in the southern coastal area of Zhejiang based on stomach contents and stable isotope analysis. [J]. Chinese Journal of Applied Ecology, 2022, 33(11): 3097-3104. |
[14] | WANG Qing-lin, YU Shan-shan, JIN Xiao-min, REN Jian-gong, SI Fei, SUN Gui-qing, SUN Zhao-hui, BAI Zeng-qi. Identification of released population of Japanese flounder based on stable isotopes analysis [J]. Chinese Journal of Applied Ecology, 2022, 33(1): 261-267. |
[15] | CHEN Miao, LIU Shun, XU Ge-xi, SHI Zuo-min. Vertical distribution of natural abundance of stable carbon and nitrogen isotopes along the soil profile and the underlying mechanisms [J]. Chinese Journal of Applied Ecology, 2021, 32(6): 1919-1927. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 68
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 268
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||