[1] Hautier Y, Tilman D, Isbell F, et al. Anthropogenic environmental changes affect ecosystem stability via biodiversity. Science, 2015, 348: 336-340 [2] Niu B, Fu G. Response of plant diversity and soil microbial diversity to warming and increased precipitation in alpine grasslands on the Qinghai-Xizang Plateau: A review. Science of the Total Environment, 2024, 912: 168878 [3] 宋鸽, 王全成, 郑勇, 等. 丛枝菌根真菌对大气CO2浓度升高和增温响应研究进展. 应用生态学报, 2022, 33(6): 1709-1718 [4] Mitsch WJ, Gosselink JG. Wetlands. 5th Ed. New York, USA: John Wiley & Sons, 2015 [5] Huang XJ, Wu ZF, Zhang QF, et al. How to measure wetland destruction and risk: Wetland damage index. Ecological Indicators, 2022, 141: 109126 [6] 刘伟坡, 沙娜, 程旭学. 三江平原建三江地下水动态变化特征. 灌溉排水学报, 2020, 39(5): 96-100 [7] Zhang XH, Jiang SS, Jiang W, et al. Shrub encroachment balances soil organic carbon pool by increasing carbon recalcitrance in a temperate herbaceous wetland. Plant and Soil, 2021, 464: 347-357 [8] 李美慧, 李玉华, 晏昕辉, 等. 半灌木扩张驱动的草地植物多样性与地上生产力特征及其关系研究. 草业学报, 2023, 32(5): 27-39 [9] Maestre FT, Bowker MA, Puche MD, et al. Shrub encroachment can reverse desertification in semi-arid medi-terranean grasslands. Ecology Letters, 2009, 12: 930-941 [10] Erfanzadeh R, Yazdani M, Arani AM. Effect of different shrub species on their sub-canopy soil and vegetation properties in semiarid regions. Land Degradation and Development, 2021, 32: 3236-3247 [11] 梁道省, 牟长城, 高旭, 等. 松嫩平原湿地植物群落多样性的环境梯度分布格局及控制因子. 生态学报, 2023, 43(1): 339-351 [12] 高军, 杨建英, 史常青, 等. 密云水库上游油松人工水源涵养林林下植物多样性与土壤理化特性. 应用生态学报, 2022, 33(9): 2305-2313 [13] Lee A, Fujita H, Kobayashi H. Effects of drainage on open-water mire pools: Open water shrinkage and vegetation change of pool plant communities. Wetlands, 2017, 37: 741-751 [14] 赵月琴, 马秀静, 赵琬婧, 等. 三江平原垦殖湿地恢复对温室气体排放的影响. 应用生态学报, 2023, 34(8): 2142-2152 [15] Wang CG, Li HX, Sun XX, et al. Responses of soil microbial biomass and enzyme activities to natural restoration of reclaimed temperate marshes after abandonment. Frontiers in Environmental Science, 2021, 9: 701610 [16] 李海兴, 孙晓新, 满秀玲, 等. 恢复湿地土壤重金属含量变化及污染评价. 北京林业大学学报, 2020, 42(3): 134-142 [17] 方精云, 王襄平, 沈泽昊, 等. 植物群落清查的主要内容、方法和技术规范. 生物多样性, 2009, 17(6): 533-548 [18] 中华人民共和国农业部. 土壤全量钙、镁、钠的测定(NY/T 296—1995). 北京: 中国农业出版社, 1995 [19] 李艳红, 李发东, 马雯. 艾比湖湿地植物多样性特征及其影响因素研究. 生态科学, 2016, 35(3): 78-84 [20] Saler JL, Jules ES. Woody vegetation encroachment: A driver of herbaceous species diversity loss in a coastal fen. Madrono, 2021, 68: 9-19 [21] Silva FHB, Arieira J, Parolin P, et al. Shrub encroachment influences herbaceous communities in flooded grasslands of a neotropical savanna wetland. Applied Vegetation Science, 2016, 19: 391-400 [22] Connell JH, Slatyer RO. Mechanisms of succession in natural communities and their role in community stability and organization. American Naturalist, 1977, 111: 1119-1144 [23] Limpens J, Fijen TPM, Keizer I, et al. Shrubs and degraded permafrost pave the way for tree establishment in subarctic peatlands. Ecosystems, 2021, 24: 370-383 [24] Kapfer J, Grytnes JA, Gunnarsson U, et al. Fine-scale changes in vegetation composition in a boreal mire over 50 years. Journal of Ecology, 2011, 99: 1179-1189 [25] Favreau M, Pellerin S, Poulin M. Tree encroachment induces biotic differentiation in Sphagnum-dominated bogs. Wetlands, 2019, 39: 841-852 [26] 李满乐, 范雅倩, 王可, 等. 北京松山林下典型灌木绣线菊光、水利用效率的季节动态及其对环境因子的响应. 水土保持研究, 2023, 30(3): 301-309 [27] 薛欣欣, 吴小平, 王文斌, 等. 植物-土壤系统中钾镁营养及其交互作用研究进展. 土壤, 2019, 51(1): 1-10 [28] Zhang XH, Shan LP, Tan WW, et al. Effect of woody plant expansion on decomposition of fine root mixtures in a grass-dominated temperate wetland. Wetlands Ecology and Management, 2020, 28: 191-197 [29] Tiemeyer B, Albiac Borraz E, Augustin J, et al. High emissions of greenhouse gases from grasslands on peat and other organic soils. Global Change Biology, 2016, 22: 4134-4149 [30] Fenner N, Freeman C. Woody litter protects peat carbon stocks during drought. Nature Climate Change, 2020, 10: 363-369 [31] Ratcliffe JL, Creevy A, Andersen R, et al. Ecological and environmental transition across the forested-to-open bog ecotone in a west Siberian peatland. Science of the Total Environment, 2017, 607-608: 816-828 [32] 侯清晨, 冯燕楼, 周玉洁, 等. 植物入侵机制的主要假说. 应用生态学报, 2022, 33(11): 3105-3115 [33] Wang C, Wang W, Sardans J, et al. Higher fluxes of C, N and P in plant/soil cycles associated with plant invasion in a subtropical estuarine wetland in China. Science of the Total Environment, 2020, 730: 139124 [34] Malvi UR. Interaction of micronutrients with major nutrients with special reference to potassium. Karnataka Journal of Agricultural Sciences, 2011, 24: 4727 [35] 李艳琼, 邓湘雯, 易昌晏, 等. 湘西南喀斯特地区灌丛生态系统植物和土壤养分特征. 应用生态学报, 2016, 27(4): 1015-1023 [36] Gao XL, Li XG, Zhao L, et al. Shrubs magnify soil phosphorus depletion in Tibetan meadows: Conclusions from C:N:P stoichiometry and deep soil profiles. Science of the Total Environment, 2021, 785: 147320 [37] 郭宇菲, 万荣荣, 龚磊强, 等. 鄱阳湖湿地中低滩典型植物群落的生物多样性及影响因子. 湖泊科学, 2023, 35(4): 1370-1379 [38] Wassen MJ, Venterink HO, Lapshina ED, et al. Endangered plants persist under phosphorus limitation. Nature, 2005, 437: 547-550 |