Chinese Journal of Applied Ecology ›› 2024, Vol. 35 ›› Issue (9): 2382-2391.doi: 10.13287/j.1001-9332.202409.012
• Expert Insights • Previous Articles Next Articles
FENG Qingshan1,2,3, MAO Qinjiang1,2,3, MA Jianguo1,2,3, LI Yuman1,2,3, YANG Xiaoqian1,2,3, LU Xingxin1,2,3, WANG Xiaobo1,2,3*
Received:
2024-01-09
Accepted:
2024-07-17
Online:
2024-09-18
Published:
2025-03-18
FENG Qingshan, MAO Qinjiang, MA Jianguo, LI Yuman, YANG Xiaoqian, LU Xingxin, WANG Xiaobo. Microbiological mechanism of hydrogen fertilizer effect in soil[J]. Chinese Journal of Applied Ecology, 2024, 35(9): 2382-2391.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.cjae.net/EN/10.13287/j.1001-9332.202409.012
[1] Dong WT, Zhu YY, Chang HZ, et al. An SHR-SCR module specifies legume cortical cell fate to enable nodulation. Nature, 2021, 589: 586-590 [2] Zhang XN, Ward BB, Sigman DM. Global nitrogen cycle: Critical enzymes, organisms, and processes for nitrogen budgets and dynamics. Chemical Reviews, 2020, 120: 5308-5351 [3] Franke AC, Van den Brand GJ, Vanlauwe B, et al. Sustainable intensification through rotations with grain legumes in Sub-Saharan Africa: A review. Agriculture, Ecosystems and Environment, 2018, 261: 172-185 [4] Li L, Li SM, Sun JH, et al. Diversity enhances agricultural productivity via rhizosphere phosphorus facilitation on phosphorus-deficient soils. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104: 11192-11196 [5] Chen BQ, Liu EK, Tian QZ, et al. Soil nitrogen dyna-mics and crop residues: A review. Agronomy for Sustainable Development, 2014, 34: 429-442 [6] Torabian S, Farhangi-Abriz S, Denton MD. Do tillage systems influence nitrogen fixation in legumes? A review. Soil & Tillage Research, 2019, 185: 113-121 [7] Geurts R, Xiao TT, Reinhold-Hurek B. What does it take to evolve a nitrogen-fixing endosymbiosis? Trends in Plant Science, 2016, 21: 199-208 [8] Piché-Choquette S, Khdhiri M, Constant P. Dose-response relationships between environmentally-relevant H2 concentrations and the biological sinks of H2, CH4 and CO in soil. Soil Biology and Biochemistry, 2018, 123: 190-199 [9] Huang Z, Cui CH, Cao YJ, et al. Tea plant-legume intercropping simultaneously improves soil fertility and tea quality by changing Bacillus species composition. Horticulture Research, 2022, 9: uhac046 [10] Xu YF, Teng Y, Dong XY, et al. Genome-resolved metagenomics reveals how soil bacterial communities respond to elevated H2 availability. Soil Biology and Biochemistry, 2021, 163: b108464 [11] 陈惠, 朱成, 林红莲, 等. 木麻黄根瘤内生弗兰克氏菌的反硝化作用. 应用生态学报, 2023, 34(4): 1109-1116 [12] Zulfiqar F, Russell G, Hancock JT. Molecular hydrogen in agriculture. Planta, 2021, 254: 56 [13] Li CX, Gong TY, Bian BT, et al. Roles of hydrogen gas in plants: A review. Functional Plant Biology, 2018, 45: 783-792 [14] de la Porte A, Schmidt R, Yergeau E, et al. A gaseous milieu: Extending the boundaries of the rhizosphere. Trends in Microbiology, 2020, 28: 536-542 [15] 冀照君, 王非梦, 王素阁, 等. 鲁黄1号大豆与根瘤菌的共生匹配性. 应用生态学报, 2014, 25(12): 3573-3579 [16] Das D, Veziroğlu TN. Hydrogen production by biological processes: A survey of literature. International Journal of Hydrogen Energy, 2001, 26: 13-28 [17] Novelli PC, Lang PM, Masarie KA, et al. Molecular hydrogen in the troposphere: Global distribution and budget. Journal of Geophysical Research: Atmospheres, 1999, 104: 30427-30444 [18] Prinzhofer A, Cissé CST, Diallo AB. Discovery of a large accumulation of natural hydrogen in Bourakebougou (Mali). International Journal of Hydrogen Energy, 2018, 43: 19315-19326 [19] Barz M, Beimgraben C, Staller T, et al. Distribution analysis of hydrogenases in surface waters of marine and freshwater environments. PLoS One, 2010, 5: e13846 [20] Constant P, Poissant L, Villemur R. Tropospheric H2 budget and the response of its soil uptake under the changing environment. Science of the Total Environment, 2009, 407: 1809-1823 [21] Postgate JR. Biology nitrogen fixation: Fundamentals. Philosophical Transactions of the Royal Society B: Biological Sciences, 1982, 296: 375-385 [22] Patterson JD, Aydin M, Crotwell AM, et al. H2 in Antarctic firn air: Atmospheric reconstructions and implications for anthropogenic emissions. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118: e2103335118 [23] Burgess BK, Lowe DJ. Mechanism of molybdenum nitrogenase. Chemical Reviews, 1996, 96: 2983-3011 [24] Hoffman BM, Dean DR, Seefeldt LC. Climbing nitrogenase: Toward a mechanism of enzymatic nitrogen fixation. Accounts of Chemical Research, 2009, 42: 609-619 [25] Hauglustaine DA, Ehhalt DH. A three-dimensional model of molecular hydrogen in the troposphere. Journal of Geophysical Research: Atmospheres, 2002, 107: 4330 [26] Wilson PW, Umbreit WW. Mechanism of symbiotic nitrogen fixation. Archiv für Mikrobiologie, 1937, 8: 440-457 [27] Schubert KR, Evans HJ. Hydrogen evolution: A major factor affecting the efficiency of nitrogen fixation in nodulated symbionts. Proceedings of the National Academy of Sciences of the United States of America, 1976, 73: 1207-1211 [28] Conrad R, Seiler W. Contribution of hydrogen production by biological nitrogen fixation to the global hydrogen budget. Journal of Geophysical Research: Oceans, 1980, 85: 5493-5498 [29] Hunt S, Layzell DB. Gas exchange of legume nodules and the regulation of nitrogenase activity. Annual Review of Plant Biology, 1993, 44: 483-511 [30] Bay SK, Dong X, Bradley JA, et al. Trace gas oxidizers are widespread and active members of soil microbial communities. Nature Microbiology, 2021, 6: 246-256 [31] Greening C, Boyd E. Microbial hydrogen. Frontiers in Microbiology, 2020, 11: 56 [32] Cordero PRF, Grinter R, Hards K, et al. Two uptake hydrogenases differentially interact with the aerobic respiratory chain during mycobacterial growth and persistence. Journal of Biological Chemistry, 2019, 294: 18980-18991 [33] Ji M, Greening C, Vanwonterghem I, et al. Atmospheric trace gases support primary production in Antarctic desert surface soil. Nature, 2017, 552: 400-403 [34] Xiao X, Prinn RG, Simmonds PG, et al. Optimal estimation of the soil uptake rate of molecular hydrogen from the Advanced Global Atmospheric Gases Experiment and other measurements. Journal of Geophysical Research: Atmospheres, 2007, 112: D07303 [35] Flynn B, Graham A, Scott N, et al. Nitrogen fixation, hydrogen production and N2O emissions. Canadian Journal of Plant Science, 2014, 94: 1037-1041 [36] Cai YF, Zheng Y, Bodelier PLE, et al. Conventional methanotrophs are responsible for atmospheric methane oxidation in paddy soils. Nature Communications, 2016, 7: 11728 [37] Tromp TK, Shia RL, Allen M, et al. Potential environmental impact of a hydrogen economy on the stratosphere. Science, 2003, 300: 1740-1742 [38] Piché-Choquette S, Constant P. Molecular hydrogen, a neglected key driver of soil biogeochemical processes. Applied and Environmental Microbiology, 2019, 85: e02418-18 [39] 王瑾, 王喆之, 董忠民. 土壤氢氧化细菌促进作物生长机理研究进展. 应用与环境生物学报, 2012, 18(5): 853-861 [40] Golding AL, Zou YN, Yang X, et al. Plant growth promoting H2-oxidizing bacteria as seed inoculants for cereal crops. Agricultural Sciences, 2012, 3: 510-516 [41] 王卫卫, 关桂兰, 孔爱琴, 等. 河西走廊豆科植物结瘤固氮特性初步研究. 西北植物学报, 1997, 17(4): 450-457 [42] Lindstrom K, Mousavi SA. Effectiveness of nitrogen fixation in rhizobia. Microbial Biotechnology, 2020, 13: 1314-1335 [43] Dong Z, Wu L, Kettlewell B, et al. Hydrogen fertilization of soils: Is this a benefit of legumes in rotation? Plant, Cell and Environment, 2003, 26: 1875-1879 [44] Zou YN. Effect of H2 on Soil Bacterial Community Structure and Gene Expression. Master Thesis. Halifax, Canada: Saint Mary's University, 2012 [45] Maimaiti J, Zhang Y, Yang J, et al. Isolation and characterization of hydrogen-oxidizing bacteria induced following exposure of soil to hydrogen gas and their impact on plant growth. Environmental Microbiology, 2007, 9: 435-444 [46] Ren PJ, Jin X, Liao WB, et al. Effect of hydrogen-rich water on vase life and quality in cut lily and rose flowers. Horticulture, Environment and Biotechnology, 2017, 58: 576-584 [47] Piche-Choquette S, Khdhiri M, Constant P. Survey of high-affinity H2-oxidizing bacteria in soil reveals their vast diversity yet under representation in genomic databases. Microbial Ecology, 2017, 74: 771-775 [48] 陶虎春, 谢勇, 张丽娟, 等. 一株氢氧化细菌的生长条件及其对不同氮源利用的研究. 北京大学学报: 自然科学版, 2021, 57(4): 756-764 [49] Koch H, Galushko A, Albertsen M, et al. Growth of nitrite-oxidizing bacteria by aerobic hydrogen oxidation. Science, 2014, 345: 1052-1054 [50] Greening C, Carere CR, Rushton-Green R, et al. Persistence of the dominant soil phylum Acido bacteria by trace gas scavenging. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112: 10497-10502 [51] Ehsani E, Dumolin C, Arends JB, et al. Enriched hydrogen-oxidizing microbiomes show a high diversity of co-existing hydrogen-oxidizing bacteria. Applied Microbiology and Biotechnology, 2019, 103: 8241-8253 [52] Islam ZF, Cordero PR, Feng J, et al. Two Chloroflexiclasses independently evolved the ability to persist on atmospheric hydrogen and carbon monoxide. The ISME Journal, 2019, 13: 1801-1813 [53] Giguere AT, Eichorst SA, Meier DV, et al. Acidobacteria are active and abundant members of diverse atmospheric H2-oxidizing communities detected in temperate soils. The ISME Journal, 2021, 15: 363-376 [54] Kanno M, Constant P, Tamaki H, et al. Detection and isolation of plant-associated bacteria scavenging atmospheric molecular hydrogen. Environmental Microbiology, 2016, 18: 2495-2506 [55] Schuler S, Conrad R. Soils contain two different activities for oxidation of hydrogen. FEMS Microbiology Ecology, 1990, 6: 77-83 [56] Piché-Choquette S, Tremblay J, Tringe SG, et al. H2-saturation of high affinity H2-oxidizing bacteria alters the ecological niche of soil microorganisms unevenly among taxonomic groups. PeerJ, 2016, 4: e1782 [57] Constant P, Poissant L, Villemur R. Isolation of Streptomyces sp. PCB7, the first microorganism demonstrating high-affinity uptake of tropospheric H2. The ISME Journal, 2008, 2: 1066-1076 [58] Wang XB, Schmidt R, Yergeau É, et al. Field H2 infusion alters bacterial and archaeal communities but not fungal communities nor nitrogen cycle gene abundance. Soil Biology and Biochemistry, 2020, 151: 108018 [59] Schulz-Bohm K, Gerards S, Hundscheid M, et al. Calling from distance: Attraction of soil bacteria by plant root volatiles. The ISME Journal, 2018, 12: 1252-1262 [60] Liot Q, Constant P. Breathing air to save energy-new insights into the ecophysiological role of high-affinity [NiFe]-hydrogenase in Streptomyces avermitilis. Microbiologyopen, 2016, 5: 47-59 [61] Yonemura S, Yokozawa M, Kawashima S, et al. Model analysis of the influence of gas diffusivity in soil on CO and H2 uptake. Tellus Series B: Chemical and Physical Meteorology, 2016, 52: 919-933 [62] 黎慧娟, 彭静静. 水稻土中铁还原菌多样性. 应用生态学报, 2011, 22(10): 2705-2710 [63] Bertagni MB, Paulot F, Porporato A. Moisture fluctuations modulate abiotic and biotic limitations of H2 soil uptake. Global Biogeochemical Cycles, 2021, 35: e2021GB006987 [64] 李璐璐. 三叶草根际土壤中氢氧化细菌促生特性及氢气浓度对细菌群落多样性的影响. 硕士论文. 西安: 西北大学, 2020 [65] 刘慧芬, 王卫卫, 曹桂林, 等. 氢气对刺槐根际土壤微生物种群和土壤酶活性的影响. 应用与环境生物学报, 2010, 16(4): 515-518 [66] 刘慧芬. 刺槐根瘤固氮放氢对根际土壤微生物的影响. 硕士论文. 西安: 西北大学, 2010 [67] 勾宇春, 王宗抗, 张志鹏, 等. 植物根际促生菌作用机制研究进展. 应用与环境生物学报, 2023, 29(2): 495-506 [68] Sun Y, Wang CT, Yang JY, et al. Elevated CO2 shifts soil microbial communities from K- to r-strategists. Global Ecology and Biogeography, 2021, 30: 961-972 [69] 氢云链. 增产提质 上海松江富氢水稻集中收割. 上海节能, 2023(9): 1332 [70] Stein S, Selesi D, Schilling R, et al. Microbial activity and bacterial composition of H2-treated soils with net CO2 fixation. Soil Biology and Biochemistry, 2005, 37: 1938-1945 [71] Yu J, Dow A, Pingali S. The energy efficiency of carbon dioxide fixation by a hydrogen-oxidizing bacterium. International Journal of Hydrogen Energy, 2013, 38: 8683-8690 [72] Martinez CM, Alvarez LH, Celis LB, et al. Humus-reducing microorganisms and their valuable contribution in environmental processes. Applied Microbiology and Biotechnology, 2013, 97: 10293-10308 [73] Liu FJ, Wang YQ, Zhang GH, et al. Molecular hydrogen positively influences lateral root formation by regulating hydrogen peroxide signaling. Plant Science, 2022, 325: 111500 [74] 赵玲玉, 索升州, 赵祺, 等. 梭梭根际促生菌(PGPR)菌肥对番茄产量、品质和土壤特性的影响. 甘肃农业大学学报, 2022, 57(3): 42-51 [75] Dean CA, Sun WC, Dong ZM, et al. Soybean nodule hydrogen metabolism affects soil hydrogen uptake and growth of rotation crops. Canadian Journal of Plant Science, 2006, 86: 1355-1359 [76] 王琳, 李璐璐, 李志英, 等. 紫花苜蓿根际氢氧化细菌的分离及其对小麦种子促生作用的研究. 微生物学杂志, 2020, 40(1): 45-51 [77] Su JC, Zhang YH, Nie Y, et al. Hydrogen-induced osmotic tolerance is associated with nitric oxide-mediated proline accumulation and reestablishment of redox balance in alfalfa seedlings. Environmental and Experimental Botany, 2018, 147: 249-260 [78] Garbowski M, Boughton E, Ebeling A, et al. Nutrient enrichment alters seasonal β-diversity in global grasslands. Journal of Ecology, 2023, 111: 2134-2145 [79] Li CX, Huang DJ, Wang CL, et al. NO is involved in H2-induced adventitious rooting in cucumber by regulating the expression and interaction of plasma membrane H+-ATPase and 14-3-3. Planta, 2020, 252: 9 [80] 金奇江. 血红素加氧酶1介导氢气和抗坏血酸增强紫花苜蓿非生物胁迫耐性的分子机理. 博士论文. 南京: 南京农业大学, 2013 [81] 卢慧, 伍冰倩, 王伊帆, 等. 富氢水处理对采后番茄果实灰霉病抗性的影响. 河南农业科学, 2017, 46(2): 64-68 [82] Wang YQ, Zhang T, Wang J, et al. Regulation of chlorothalonil degradation by molecular hydrogen. Journal of Hazardous Materials, 2022, 424: 127291 [83] Chen H, Hai HB, Wang H, et al. Hydrogen-rich water mediates redox regulation of the antioxidant system, mycelial regeneration and fruiting body development in Hypsizygus marmoreus. Fungal Biology, 2018, 122: 310-321 [84] 郑艳梅, 李艺诚, 宋雯佩, 等. 富氢水和纳米TiO2-壳聚糖对三华李的保鲜作用. 食品研究与开发, 2022, 43(18): 55-62 [85] 孟凡虹, 王伊帆, 伍冰倩, 等. 氢气对植物生理功能的影响及作用机制研究进展. 河南农业科学, 2017, 46(2): 1-5 [86] Garcia-Mata C, Lamattina L. Hydrogen sulphide, a novel gasotransmitter involved in guard cell signalling. New Phytologist, 2010, 188: 977-984 [87] Xie YJ, Mao Y, Zhang W, et al. Reactive oxygen species-dependent nitric oxide production contributes to hydrogen-promoted stomatal closure in Arabidopsis. Plant Physiology, 2014, 165: 759-773 [88] Ohsawa I, Ishikawa M, Takahashi K, et al. Hydrogen acts as a therapeutic antioxidant by selectively reducing cytotoxic oxygen radicals. Nature Medicine, 2007, 13: 688-694 [89] 闫梅, 姚彦东, 牟开萍, 等. 脱落酸通过提高抗氧化酶活性与基因表达参与富氢水增强番茄幼苗抗旱性. 浙江农业学报, 2022, 34(9): 1901-1910 [90] Jin QJ, Zhu KK, Cui WT, et al. Hydrogen-modulated stomatal sensitivity to abscisic acid and drought tolerance via the regulation of apoplastic pH in Medicago sativa. Journal of Plant Growth Regulation, 2016, 35: 565-573 [91] Sharma SS, Dietz KJ. The relationship between metal toxicity and cellular redox imbalance. Trends in Plant Science, 2009, 14: 43-50 [92] Cui WT, Gao CY, Fang P, et al. Alleviation of cadmium toxicity in Medicago sativa by hydrogen-rich water. Journal of Hazardous Materials, 2013, 260: 715-724 [93] Wu Q, Huang LP, Su NN, et al. Calcium-dependent hydrogen peroxide mediates hydrogen-rich water-reduced cadmium uptake in plant roots. Plant Physiology, 2020, 183: 1331-1344 [94] Abdalmegeed D, Zhao G, Cheng PF, et al. The importance of nitric oxide as the molecular basis of the hydrogen gas fumigation-induced alleviation of Cd stress on Ganoderma lucidum. Journal of Fungi, 2022, 8: 10 [95] Chen M, Cui WT, Zhu KK, et al. Hydrogen-rich water alleviates aluminum-induced inhibition of root elongation in alfalfa via decreasing nitric oxide production. Journal of Hazardous Materials, 2014, 267: 40-47 [96] Su NN, Wu Q, Chen H, et al. Hydrogen gas alleviates toxic effects of cadmium in Brassica campestris seedlings through up-regulation of the antioxidant capacities: Possible involvement of nitric oxide. Environmental Pollution, 2019, 251: 45-55 [97] Li B, Xie M, Zhang S, et al. Atmospheric application of trace amounts of nitric oxide increases yield, reduces Cd concentration, and improves antioxidant properties in pakchoi (Brassica chinensis L.) grown in Cd-contaminated soil. Russian Journal of Plant Physiology, 2023, 173: 905-911 [98] 刘方, 刘勇波, 李俊生, 等. 氢气在植物抗胁迫中的作用. 植物生理学报, 2015, 51(2): 141-152 [99] Su JC, Yang XH, Shao YD, et al. Molecular hydrogen-induced salinity tolerance requires melatonin signalling in Arabidopsis thaliana. Plant, Cell and Environment, 2021, 44: 476-490 [100] 王楠. 盐胁迫下氢氧化细菌WS6对小麦和油菜萌发及促生机制研究. 硕士论文. 西安: 西北大学, 2012 [101] 张海那, 范海延, 于洋, 等. 氢气调节植物生长发育和提高植物抗逆性的研究进展. 西北植物学报, 2017, 37(2): 402-407 [102] 陈兴都, 王卫卫, 郭利伟, 等. 大豆根际土壤中氢氧化细菌的分离、筛选和基本特征. 应用生态学报, 2007, 18(9): 2069-2074 [103] 蒙渊, 王卫卫, 陈兴都, 等. 氢氧化细菌分离、筛选及促生机制研究进展. 微生物学通报, 2010, 37(10): 1525-1532 [104] Harrison MA, Kaufman PB. Hormonal regulation of lateral bud (tiller) release in oats (Avena sativa L.). Plant Physiology, 1980, 66: 1123-1127 [105] Gan S, Amasino RM. Inhibition of leaf senescence by autoregulated production of cytokinin. Science, 1995, 270: 1986-1988 [106] 蔺继尚, 王丽霞, 关桂兰. 长年干旱环境对新疆豆科植物根瘤形态结构的影响. 应用生态学报, 1993, 4(3): 299-302 [107] 王卫星. 沙打旺根际氢氧化细菌的分离及SDW-16的促生效应研究. 硕士论文. 西安: 西北大学, 2014 [108] 付博, 王卫卫, 唐明, 等. 一株产1-氨基环丙烷-1-羧酸脱氨酶的氢氧化细菌的分离鉴定及酶活力测定. 微生物学报, 2009, 49(3): 395-399 [109] Shaharoona B, Naveed M, Arshad M, et al. Fertilizer-dependent efficiency of pseudomonads for improving growth, yield, and nutrient use efficiency of wheat (Triticum aestivum L.). Applied Microbiology and Biotechnology, 2008, 79: 147-155 [110] 朱天才, 周洁尘, 段翔, 等. 花榈木根际促生菌的筛选鉴定及促生特性. 中南林业科技大学学报, 2023, 43(1): 43-49 [111] Liu RR, Li LL, Li ZY, et al. Impact of hydrogen on the transcriptome of 1021 using RNA-sequencing technology. Polish Journal of Microbiology, 2020, 69: 39-48 [112] 沈文飚, 苏久厂, 孙学军, 等. 氢气植物学效应的研究进展. 南京农业大学学报, 2018, 41(3): 392-401 [113] Manzoor N, Ali L, Ahmed T, et al. Recent advancements and development in nano-enabled agriculture for improving abiotic stress tolerance in plants. Frontiers in Plant Science, 2022, 13: 951752 [114] Philippot L, Chenu C, Kappler A, et al. The interplay between microbial communities and soil properties. Nature Reviews Microbiology, 2024, 22: 226-239 [115] 马林聪. 中国氢能产业基础设施发展蓝皮书. 北京: 中国质检出版社, 2016: 1-63 [116] 张永伟, 张真, 苗乃乾, 等. 中国氢能产业发展报告. 北京: 中国电动汽车百人会, 2020: 2-39 |
[1] | ZHANG Kang, LI Jiajia, WEI Zhenhao, FAN Miaochun, SHANGGUAN Zhouping. Revealing nutrient limitation status of microorganisms in the soil of Robinia pseudoacacia plantation through soil stoichiometry and enzyme metrology [J]. Chinese Journal of Applied Ecology, 2024, 35(7): 1799-1806. |
[2] | YANG Jun, WANG Ruixia, WANG Jun, YU Shuang, YANG Bo, WANG Wenqiang, YANG Junlong, LI Xiaowei. Microbial community characteristics and their influencing factors in Caragana korshinskii sand-fixing forests of different restoration years in the Mu Us Desert, China [J]. Chinese Journal of Applied Ecology, 2024, 35(7): 1807-1814. |
[3] | HAN Zichen, GUO Qiang, XIA Yun, YANG Liuming, FAN Yuexin, YANG Yusheng. Characterizations of soil enzyme activities and stoichiometry in three subtropical forest stands [J]. Chinese Journal of Applied Ecology, 2024, 35(6): 1501-1508. |
[4] | WANG Yi, LI Wenshan, ZHAN Pengfei, WANG Hang. Spatial distribution of soil microorganisms in the Zoige Plateau peatland, Southwest China [J]. Chinese Journal of Applied Ecology, 2024, 35(6): 1705-1715. |
[5] | LEI Ziran, WANG Xin, YU Xinxiao, JIA Guodong. Seasonal variation of water utilization sources and responses to precipitation in the dominant species of broad-leaved and needle-leaved mixed forests in Mount Lushan, China [J]. Chinese Journal of Applied Ecology, 2024, 35(4): 886-896. |
[6] | ZHANG Jun, CHEN Hongsong, NIE Yunpeng, FU Zhiyong, LIAN Jinjiao, WANG Fa, LUO Zidong, WANG Kelin. Research progress on structure and hydrological processes in the karst critical zone of southwest China [J]. Chinese Journal of Applied Ecology, 2024, 35(4): 985-996. |
[7] | YANG Xue, CAO Xia, BAI Bing, YUAN Yanna, ZHANG Ning, XIE Yang, WU Chuncheng. Effects of root-applied biochar on soil nitrogen transformation and root nitrogen metabolism of cucumber seedlings in facility continuous cropping soils [J]. Chinese Journal of Applied Ecology, 2024, 35(3): 713-720. |
[8] | ZUO Yuzhu, PAN Chengzhong, MA Yongxing, MA Lan. Rainfall-runoff partitioning in small watersheds of different vegetation types in the loess area based on hydrogen and oxygen isotope tracing [J]. Chinese Journal of Applied Ecology, 2024, 35(2): 399-406. |
[9] | WEI Haoyan, LU Yanwei, LI Min, LI Peiyue, CHENG Wenqing, SI Bingcheng. Anomalous stable hydrogen-oxygen isotope characteristics and water vapor sources of autumn precipitation in the Weihe River basin, Northwest China [J]. Chinese Journal of Applied Ecology, 2023, 34(7): 1737-1744. |
[10] | PANG Danbo, WU Mengyao, ZHAO Yaru, YANG Juan, DONG Liguo, WU Xudong, CHEN Lin, LI Xuebin, NI Xilu, LI Jingyao, LIANG Yongliang. Soil microbial community characteristics and the influencing factors at different elevations on the eastern slope of Helan Mountain, Northwest China [J]. Chinese Journal of Applied Ecology, 2023, 34(7): 1957-1967. |
[11] | WU Yingming, HAN Lu, LIU Keyan, HU Xu, FU Zhaoqi, CHEN Lixin. Water source of Robinia pseudoacacia and Platycladus orientalis plantations under different soil moisture conditions in the Loess Plateau of Western Shanxi, China [J]. Chinese Journal of Applied Ecology, 2023, 34(3): 588-596. |
[12] | YU Bo, QIN Si-jun, LYU De-guo. Responses of soil microorganisms, enzyme activities and nutrient contents to inter-row grass ploughing and returning to the field in a natural sod culture apple orchard [J]. Chinese Journal of Applied Ecology, 2023, 34(1): 145-150. |
[13] | GULHANAT·Bolatbek, CHANG Shun-li, BAHJAYNAR·Tiemerbek, ZHANG Yu-tao. Water sources of Picea schrenkiana and Berberis heteropoda in the Tianshan Mountains in summer [J]. Chinese Journal of Applied Ecology, 2022, 33(7): 1893-1900. |
[14] | LI Jia-qi, HUANG Ya-nan, SHI Pei-jun, LI Zhi. Isotopic characteristics and vapor sources of atmospheric precipitation in the loess region of North Shaanxi, China [J]. Chinese Journal of Applied Ecology, 2022, 33(6): 1459-1465. |
[15] | LIU Cheng-jing, JIAO Yuan-mei, XU Qiu-e, YANG Yan-fen, DING Yin-ping, LIU Zhi-lin. Influence of landscape pattern on elevation effect of δ18O in surface water in Hani Terrace [J]. Chinese Journal of Applied Ecology, 2022, 33(4): 1083-1090. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||