[1] 周文莹, 张入匀, 李艳朋, 等. 粤港澳大湾区不同类型湿地水鸟群落物种多样性和越冬水鸟栖息地重要性评价. 湿地科学, 2021, 19(2): 178-190 [2] Peng JB, Wang DL, Liao XH, et al. Wild animal survey using UAS imagery and deep learning: Modified Faster R-CNN for kiang detection in Tibetan Plateau. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 169: 364-376 [3] Cao L, Barter M, Zhao MJ, et al. A systematic scheme for monitoring waterbird populations at Shengjin Lake, China: Methodology and preliminary results. Chinese Birds, 2011, 2: 1-17 [4] Zhang CM, Lu Y. Study on artificial intelligence: The state of the art and future prospects. Journal of Industrial Information Integration, 2021, 23: 100224 [5] Pan XJ, Ren YQ, Sheng KK, et al. Dynamic refinement network for oriented and densely packed object detection. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, USA, 2020: 11207-11216 [6] Zhang XK, Yan Y, Xue JH, et al. Semantic-aware occlusion-robust network for occluded person re-identification. IEEE Transactions on Circuits and Systems for Vi-deo Technology, 2020, 31: 2764-2778 [7] Girshick R. Fast R-CNN. Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile, 2015: 1440-1448 [8] Ren SQ, He KM, Girshick R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 39: 1137-1149 [9] Liu W, Anguelov D, Erhan D, et al. SSD: Single shot multibox detector. Computer Vision-ECCV 2016: 14th European Conference on Computer Vision, Amsterdam, Netherlands, 2016: 21-37 [10] Redmon J, Divvala S, Girshick R, et al. You only look once: Unified, real-time object detection. Proceedings of the IEEE International Conference on Computer Vision, Las Vegas, USA, 2016: 779-788 [11] 陈唯实, 牛红闯, 王鑫, 等. 机场净空区飞鸟与无人机多源探测技术综述. 航空学报, 2025, 46(10): 233-259 [12] 齐向明, 柴蕊, 高一萌. 重构SPPCSPC与优化下采样的小目标检测算法. 计算机工程与应用, 2023, 59(20): 158-166 [13] 杨海龙, 田莹, 王澧冰. 基于优化损失函数的YOLOv2目标检测器. 辽宁科技大学学报, 2020, 43(1): 52-57 [14] 刘洋, 战荫伟. 基于深度学习的小目标检测算法综述. 计算机工程与应用, 2021, 57(2): 37-48 [15] Ma JC, Guo JY, Zheng XL, et al. An improved bird detection method using surveillance videos from Poyang Lake based on YOLOv8. Animals, 2024, 14: 3353 [16] Lei JL, Gao SH, Rasool MA, et al. Optimized small waterbird detection method using surveillance videos based on YOLOv7. Animals, 2023, 13: 1929 [17] 王青羽, 姚国清, 方朝阳. 基于YOLOv8n的鄱阳湖轻量级鸟类目标检测与识别模型研究. 江西师范大学学报: 自然科学版, 2025, 49(1): 86-94 [18] Chen X, Pu HL, He YH, et al. An efficient method for monitoring birds based on object detection and multi-object tracking networks. Animals, 2023, 13: 1713 [19] Buslaev A, Iglovikov VI, Khvedchenya E, et al. Albumentations: Fast and flexible image augmentations. Information, 2020, 11: 125 [20] Chen YM, Yuan XB, Wang JB, et al. YOLO-MS: Rethinking multi-scale representation learning for real-time object detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2025, 47: 4240-4252 [21] 孟庆建, 翟志强, 张连朴, 等. 基于改进YOLO 11模型的棉田地表残膜识别方法研究. 农业机械学报, 2025, 56(5): 17-25, 48 [22] Feng F, Hu Y, Li WP, et al. Improved YOLOv8 algorithms for small object detection in aerial imagery. Journal of King Saud University-Computer and Information Sciences, 2024, 36: 102113 [23] 宋子盈, 杨奎河, 张宇. 基于改进YOLOv3的自然场景下鸟类检测算法. 激光与光电子学进展, 2022, 59(18): 339-346 [24] 苏泽斌, 武静威, 李鹏飞. 改进的Faster R-CNN算法在数码印花织物缺陷检测中的应用. 西安工程大学学报, 2022, 36(4): 1-9 [25] Yang B, Zhang XY, Zhang J, et al. EFLNet: Enhancing feature learning network for infrared small target detection. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 1-11 [26] 叶大鹏, 景均, 张之得, 等. MSH-YOLOv8: 融合尺度重建的蘑菇小目标检测方法. 智慧农业(中英文), 2024, 6(5): 139-152 [27] 魏堂伟, 张津诚, 王晶, 等. 基于改进YOLOv7的茶叶嫩芽识别模型研究. 智能化农业装备学报(中英文), 2024, 5(2): 42-50 [28] 赵玥, 徐钐钐, 韩巧玲, 等. 基于半监督CST的湿地场景下细粒度鸟类检测. 农业工程学报, 2025, 41(6): 185-194 [29] 李柏灿, 张军国, 张长春, 等. 基于TC-YOLO模型的北京珍稀鸟类识别方法. 生物多样性, 2024, 32(5): 127-141 [30] Chattopadhay A, Sarkar A, Howlader P, et al. Grad-cam++: Generalized gradient-based visual explanations for deep convolutional networks. 2018 IEEE Winter Conference on Applications of Computer Vision (WACV), Lake Tahoe, USA, 2018: 839-847 [31] Horn GV, Aodha OM, Song Y, et al. The inaturalist species classification and detection dataset. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 8769-8778 [32] Wah C, Branson S, Perona P, et al. Multiclass recognition and part localization with humans in the loop. Proceedings of the IEEE International Conference on Computer Vision, Barcelona, Spain, 2011: 2524-2531 [33] Li P, Li D, Li W, et al. A simple feature augmentation for domain generalization. Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, Canada, 2021: 8886-8895 [34] Chi WJ, Liu JH, Wang XZ, et al. Dbgnet: Dual-branch gate-aware network for infrared small target detection. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 1-14 [35] Cao CQ, Wang B, Zhang WR, et al. An improved faster R-CNN for small object detection. IEEE Access, 2019, 7: 106838-106846 [36] Gu L, Jia D, Vicaire P, et al. Lightweight detection and classification for wireless sensor networks in realistic environments. Proceedings of the 3rd International Conference on Embedded Networked Sensor Systems, San Diego, CA, USA, 2005: 205-217 [37] 罗禹杰, 张剑, 陈亮, 等. 基于自适应空间特征融合的轻量化目标检测算法. 激光与光电子学进展, 2022, 59(4): 310-320 [38] Luo YZ, Lin K, Xiao ZX, et al. Collaborative optimization of model pruning and knowledge distillation for efficient and lightweight multi-behavior recognition in piglets. Animals, 2025, 15: 1563 |