欢迎访问《应用生态学报》官方网站,今天是 分享到:

应用生态学报 ›› 2017, Vol. 28 ›› Issue (11): 3589-3598.doi: 10.13287/j.1001-9332.201711.037

• • 上一篇    下一篇

长期施肥黄绵土有效磷含量演变及其与磷素平衡和作物产量的关系

俄胜哲1,2, 杨志奇3, 曾希柏1*, 王亚男1, 罗照霞3, 袁金华2, 车宗贤2   

  1. 1 中国农业科学院农业环境与可持续发展研究所, 北京 100081
    2 甘肃省农业科学院土壤肥料与节水农业研究所, 兰州 730070
    3 天水市农业科学研究所, 甘肃天水 741000
  • 出版日期:2017-11-18 发布日期:2017-11-18
  • 通讯作者: *mail:zengxibai@caas.cn
  • 作者简介:俄胜哲, 男, 1978年生, 博士, 副研究员.主要从事植物营养与土壤生态研究.E-mail:eshengzhe@163.com
  • 基金资助:
    本文由国家科技支撑计划项目(2012BAD05B06)和公益性行业(农业)科研专项(201203030)资助

Soil Olsen-P content changing trend and its relationship with phosphorus surplus and crop yield under long-term fertilization in loessial soil region on the Loess Plateau, China

E Sheng-zhe1,2, YANG Zhi-qi3, ZENG Xi-bai1*, WANG Ya-nan1, LUO Zhao-xia3, YUAN Jin-hua2, CHE Zong-xian2   

  1. 1 Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
    2 Institute of Soil and Fertilizer and Save Water Agriculture, Gansu Academy of Agricultural Sciences, Lanzhou 730070, China
    3 Tianshui Academy of Agricultural Sciences, Tianshui 741000, Gansu, China
  • Online:2017-11-18 Published:2017-11-18
  • Contact: *mail:zengxibai@caas.cn
  • Supported by:
    This work was supported by National Science & Technology Pillar Program of China (2012BAD05B06) and Special Fund for Agro-scientific Research in the Public Interest of China (201203030)

摘要: 土壤有效磷(Olsen-P)含量的变化过程及其与土壤磷素平衡和作物产量的关系是科学推荐施磷的基础.本文通过设置于黄土高原黄绵土区持续34年(1981—2015)的长期定位试验,研究了长期不同施肥处理对作物磷素携出量、土壤磷素平衡、土壤Olsen-P含量的影响及其演变过程,同时对土壤Olsen-P含量与磷素平衡和作物籽粒产量的相关关系进行了分析.试验采用裂区设计,主处理为施用有机肥(M)和不施用有机肥,副处理为不施化肥(CK)、单施氮肥(N)、氮磷肥配合施用(NP)和氮磷钾肥配合施用(NPK).结果表明: 不同施肥处理和作物类型对磷素携出量和磷素平衡都有显著影响.CK、N、NP、NPK、M、MN、MNP 和MNPK处理小麦的磷素携出量多年平均值为8.63、10.64、16.22、16.21、16.25、17.83、20.39、20.27 kg·hm-2,而油菜为4.40、8.38、15.08、15.71、10.52、11.23、17.96、17.66 kg·hm-2,小麦的携出量略高于油菜.土壤磷素盈亏量与磷素投入量呈显著正相关,土壤磷素盈余为零,种植小麦的最小土壤磷素投入量为10.47 kg·hm-2,而油菜为6.97 kg·hm-2.土壤磷素盈亏量显著影响土壤有效磷的变化过程.长期不施磷的CK和N处理,土壤有效磷含量随试验年限延长而逐渐降低,年均分别降低0.16和0.15 mg·kg-1,而NP、NPK、M、MN、MNP和MNPK处理土壤有效磷含量随试验年限的延续而逐渐增加,年均增幅在0.02~0.33 mg·kg-1.土壤磷素累积盈亏量与土壤有效磷含量间存在显著的正相关关系,不施用有机肥和施有机肥处理可分别用线性模型y=0.012x+9.33和y=0.009x+11.72显著拟合.不施有机肥处理小麦籽粒产量与土壤有效磷含量呈显著正相关,而施有机肥处理两者间的相关性不明显,两者的小麦籽粒产量和土壤有效磷含量可以用线性分段模型拟合.小麦土壤有效磷农学阈值为14.99 kg·hm-2,油菜籽粒产量虽随土壤速效磷含量增加呈增加的趋势,但相关性不显著,表明在黄土高原黄绵土区,当土壤有效磷含量高于14.99 mg·kg-1时,种植小麦应减少磷肥施用量或不施磷肥.

Abstract: The changing trend of soil available phosphorus (Olsen-P) content in soil and its relationship with soil phosphorus surplus and crop yield are fundamental when making appropriate phosphate fertilizer recommendations. In this paper, the influences of long-term fertilization on crops phosphorus uptake, soil phosphorus surplus, changing trend of soil available phosphorus content and relationships of soil available phosphorus content with soil phosphorus surplus and crop yield were investigated through 34 years (1981-2015) long-term trial in loessial soil region on the Loess Plateau. The experiment had a completely-randomized-block split-plot design in triplicate. Two main-plot treatments were no farmyard manure and farmyard manure (M), and four subplot treatments were CK (no fertilizer), N (application of chemical fertilizer N), NP (application of chemical fertilizer NP) and NPK (balanced application of chemical fertilizer NPK), respectively. The results showed that fertilization treatments and crop types significantly influenced uptake amount of phosphorus and soil phosphorus surplus. Averaged over time from 1981 to 2015, wheat mean phosphorus uptake amounts of CK, N, NP, NPK, M, MN, MNP and MNPK were 8.63, 10.64, 16.22, 16.21, 16.25, 17.83, 20.39 and 20.27 kg·hm-2, while rape phosphorus uptakeamounts of eight treatments were 4.40, 8.38, 15.08, 15.71, 10.52, 11.23, 17.96 and 17.66 kg·hm-2, respectively. The surplus amount of soil phosphorus significantly correlated with the amount of phosphorus applied to soil. When soil phosphorus surplus amount equal zero, wheat and rape phosphorus input amounts were 10.47 kg·hm-2 and 6.97 kg·hm-2, respectively. Soil phosphorus surplus amount significantly influenced the changing trend of available phosphorus content in soil. CK and N treatments had no phosphorus input, and soil available phosphorus content exhibited a declining trend, annually decreased by 0.16 mg·kg-1 and 0.15 mg·kg-1, respectively. In contrast, NP, NPK, M, MN, MNP and MNPK six treatments were applied with phosphate fertilizer every years, and available phosphorus content gradually increased along with the duration of trial, with annual increase by 0.02-0.33 mg·kg-1. Soil available phosphorus content significantly correlated with phosphorus accumulative surplus amount, and the linear models were y=0.012x+9.33 and y=0.009x+11.72 in manure and no manure treatments, respectively. In no manure treatments, wheat yields significantly positively correlated with soil available phosphorus content, however, in manure treatments, their relationships did not reach a significant level. The relationship of wheat grain yield with available phosphorus content could be significantly fitted by piecewise linear model, and available phosphorus agronomy threshold of wheat was 14.99 mg·kg-1. Rape grain yield also increased with increasing soil available phosphorus content, but the relationship was not significant. This indicated when soil available P content is higher than 14.99 mg·kg -1, application of phosphate fertili-zer should be reduced or even avoided for planting wheat in loessial soil region on the Loess Plateau.