欢迎访问《应用生态学报》官方网站,今天是 分享到:

应用生态学报 ›› 2018, Vol. 29 ›› Issue (12): 4208-4216.doi: 10.13287/j.1001-9332.201812.039

• 研究论文 • 上一篇    下一篇

小型湖泊水生植物栽培对轮虫群落结构的影响

张依,魏南,王庆,梁迪文,杨宇峰*   

  1. 暨南大学水生生物研究所/水体富营养化与赤潮防治广东省教育厅重点实验室, 广州 510632
  • 收稿日期:2018-03-06 修回日期:2018-09-18 出版日期:2018-12-20 发布日期:2018-12-20
  • 作者简介:张 依, 女, 1992年生, 硕士研究生. 主要从事大型水生植物对轮虫群落结构影响研究. E-mail: zhang-yi92421@163. com
  • 基金资助:
    本文由国家自然科学基金项目(41673080,31601840)资助

Effects of macrophyte cultivation on community structure of rotifer in small lakes

ZHANG Yi, WEI Nan, WANG Qing, LIANG Di-wen, YANG Yu-feng*   

  1. Institute of Hydrobiology, Jinan University/Key Laboratory of Eutrophication and Red Tide Control, Education Department of Guangdong Province, Guangzhou 510632, China
  • Received:2018-03-06 Revised:2018-09-18 Online:2018-12-20 Published:2018-12-20
  • Supported by:
    This work was supported by the National Natural Science Foundation of China ( 41673080,31601840).
    2018-03-06 Received, 2018-09-18 Accepted

摘要: 为了解水生植物栽培对水环境及轮虫群落结构的影响,于2015年10月至2016年9月,对广州市暨南大学校园两个小型湖泊——明湖和南湖进行了周年调查.明湖无水生植物生长,南湖3—10月有水生植物轮叶黑藻生长,其中6—9月为植物旺盛生长时期.调查发现: 两湖共记录轮虫50种,分属于23个属,其中臂尾轮属、异尾轮属和腔轮属种类较多,均有8种.明湖记录轮虫32种,南湖记录39种. 明湖优势种主要有广布多肢轮虫、暗小异尾轮虫和微型多突轮虫;南湖优势种主要有螺形龟甲轮虫、爱德里亚狭甲轮虫和囊形腔轮虫.明湖轮虫丰度在2015年10月最高,达到3790 ind·L-1,2016年3月最低,为854 ind·L-1.南湖轮虫丰度在2015年11月最高,达到3555 ind·L-1,2016年1月最低,为977 ind·L-1.相似性分析表明,明湖与南湖水体轮虫群落结构差异显著,其中螺形龟甲轮虫为两湖群落结构差异贡献率最高的物种,其次为广布多肢轮虫.冗余分析表明,明湖轮虫群落结构主要受总磷、叶绿素a、水温的影响;南湖水生植物旺盛生长期,轮虫群落结构受总磷、温度、叶绿素a、深度的影响较大,优势种为底栖的无棘鳞冠轮虫、爱德里亚狭甲轮虫和囊形腔轮虫;水生植物开始生长时期主要受总氮和透明度的影响,优势种为浮游的广布多肢轮虫和等棘异尾轮虫;而无水生植物生长期主要受pH和溶解氧的影响较大,优势种亦为浮游性种,广布多肢轮虫、裂痕龟纹轮虫等.水生植物生长可有效降低N、P营养盐浓度,改善水质,增加空间异质性,支持更多轮虫种类生存,对水域生态系统的稳定具有重要作用.

Abstract: To understand the effects of macrophyte growth on water environment and rotifer community structure, monthly survey lasted for one year from October 2015 to September 2016 was conducted in Lake Minghu and Lake Nanhu at Jinan University in Guangzhou. There was no macrophyte cultivation in Lake Minghu. A kind of macrophyte Hydrilla verticillata grows from March-October in Lake Nanhu and grows vigorously in June-September. In this study, 50 species belonging to 23 gene-ra of rotifer, were recorded in the two lakes. 32 species were found in Lake Minghu and 39 species in Lake Nanhu, respectively. The dominant species in Lake Minghu were Polyarthra vulgaris, Trichocerca pusilla and Liliferotrocha subtilis. The dominant species in Lake Nanhu were Keratella cochlearis, Colurella adriatica and Lecane (Monostyla) bulla. The highest abundance of rotifers in Lake Minghu was at 3790 ind·L-1 in October 2015, and the lowest at 854 ind·L-1 in March 2016. The highest abundance of rotifers in Lake Nanhu was at 3555 ind·L-1 in November 2015, and the lowest at 977 ind·L-1 in January 2016. Results from the ANOSIM (one-way) test revealed that the community structure of rotifers was significantly different between Lake Minghu and Lake Nanhu. The largest contribution rate of the difference between the two lakes was made by Keratella cochlearis and Polyarthra vulgaris. RDA analysis showed that total phosphorus, chlorophyll a, and water temperature had significant impacts on the community structure of rotifer in Lake Minghu. During the period with luxuriant macrophyte in Lake Nanhu, the rotifer community structure was most influenced by total phosphorus, water temperature, chlorophyll a and water depth, dominated by benthic species Squatinella mutica, Colurella adriatica and Lecane bulla. During the period with sparse macrophyte, the community was mainly influenced by total nitrogen and transparency, dominanted by planktonic species Polyarthra vulgaris and Trichocerca similis. During the period with no macrophyte, communities were mainly influenced by pH and dissolved oxygen, and also dominated by planktonic ones Polyarthra vulgaris and Anuraeopsis fissa. Macrophyte could effectively absorb nutrients in water, inhibit growth of phytoplankton, improve water quality, increase spatial heterogeneity, support more species of rotifer, and maintain a stable aquatic ecosystem.