欢迎访问《应用生态学报》官方网站,今天是 分享到:

应用生态学报 ›› 2019, Vol. 30 ›› Issue (9): 3164-3174.doi: 10.13287/j.1001-9332.201909.038

• • 上一篇    下一篇

玉米与籽粒苋不同种植模式下植物生长及Cd累积特征

郭楠1,2, 迟光宇1*, 史奕1, 陈欣1   

  1. 1中国科学院沈阳应用生态研究所, 沈阳 110016;
    2中国科学院大学, 北京 100049
  • 收稿日期:2018-12-20 出版日期:2019-09-15 发布日期:2019-09-15
  • 通讯作者: * E-mail: chigy@iae.ac.cn
  • 作者简介:郭楠,男,1992年生,硕士.主要从事农田重金属污染修复研究.E-mail:364810420@qq.com
  • 基金资助:
    国家重点研发计划项目(2017YFD0800904)资助

Plant growth and Cd accumulation characteristics in different planting modes of maize and Amaranthus hypochondriacus.

GUO Nan1,2, CHI Guang-yu1*, SHI Yi1, CHEN Xin1   

  1. 1Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China;
    2University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2018-12-20 Online:2019-09-15 Published:2019-09-15
  • Contact: * E-mail: chigy@iae.ac.cn
  • Supported by:
    This work was supported by the National Key R&D Program of China (2017YFD0800904)

摘要: 为实现Cd污染农田边生产边修复的目标,采用田间原位修复的方式,将玉米与籽粒苋在Cd污染农田中以5种不同的间作模式种植: 交替宽窄行玉米宽行间作单行籽粒苋(T1)、交替宽窄行玉米宽行间作双行籽粒苋(T2)、等行距双行玉米间作单行籽粒苋(T3)、等行距双行玉米间作双行籽粒苋(T4)、玉米/籽粒苋等4行距间作(T5),并以玉米(CK1)和籽粒苋(CK2)单作种植作为对照,探究不同间作结构配置对作物与超富集植物生长及Cd累积特征的影响.结果表明: 1)与CK1相比,各间作模式单株玉米的籽粒产量呈增加趋势;T1间作模式玉米的籽粒产量较CK1增加10.5%,T4和T5间作模式玉米的籽粒产量较CK1分别减少6.3%和5.4%,T2和T3间作模式基本稳产;间作籽粒苋地上部单株生物量及单位面积产量较CK2分别显著减少69.5%~95.7%和83.9%~96.9%. 2)各间作模式玉米籽粒Cd含量较CK1呈减少趋势,而间作籽粒苋Cd含量较CK2呈增加趋势. 3)与CK2相比,各间作模式籽粒苋的富集系数、转运系数、有效转运系数均呈增加趋势;间作籽粒苋地上部Cd的单株及单位面积提取量较CK2分别显著减少40.4%~86.7%和70.4%~88.9%;各间作模式玉米与籽粒苋地上部Cd的单位面积提取总量高于单作玉米,但低于单作籽粒苋. 4)各间作模式玉米根际土有效态Cd含量及籽粒苋根际土总Cd、有效态Cd含量分别较单作玉米及单作籽粒苋呈增加趋势,但对非根际土没有显著影响.本研究中,T1间作模式有利于玉米籽粒产量的提高,T5间作模式有利于籽粒苋Cd提取量的最大化.

Abstract: To achieve the goal of remediation while producing for farmland contaminated by Cd, maize and grain amaranth (Amaranthus hypochondriacus) were planted on farmland contaminated by Cd in five different intercropping modes, including alternating wide-narrow-row of maize and single-row grain amaranth intercropped between wide rows (T1), alternating wide-narrow-row of maize and double-row grain amaranth intercropped between wide rows (T2), equidistant double-row maize and single-row grain amaranth intercropped between rows (T3), equidistant double-row maize and double-row grain amaranth intercropped between rows (T4), maize and grain amaranth intercropped with equal four rows (T5), while maize (CK1) and grain amaranth (CK2) single planted as control to explore the effects of different intercropping modes on growth and Cd accumulation of crops and hyper-accumulation plants (A. hypochondriacus). The results showed that: 1) Compared with mono-culture (CK1), grain yield of maize per plant showed an increasing trend in intercropping modes. The grain yield of maize in T1 increased by 10.5%, while that in T4 and T5 decreased by 6.3% and 5.4% respectively, and that in T2 or T3 did not change compared with monoculture of maize. The aboveground biomass per plant and yield per unit area of grain amaranth decreased by 69.5%-95.7% and 83.9%-96.9% in intercropping modes respectively compared with monoculture (CK2). 2) The Cd content of maize grain showed an increasing trend in intercropping modes compared with monoculture (CK1). The Cd content of grain amaranth showed a decreasing trend in intercropping modes compared with monoculture (CK2). 3) Compared with monoculture (CK2), the enrichment coefficient, transport coefficient, and effective transport coefficient of grain amaranth all showed an increasing trend in intercropping modes, while the aboveground Cd extraction amount per plant and per unit area of grain amaranth decreased by 40.4%-86.7% and 70.4%-88.9% in intercropping modes, respectively. The total amount of Cd extraction per unit area of maize and grain amaranth in intercropping modes was significantly higher than that in monoculture of maize and lower than that in monoculture of grain amaranth. 4) The content of available Cd in maize rhizosphere soil and the content of total/available Cd in grain amaranth rhizosphere soil both showed an increasing trend in intercropping modes compared with monoculture of both crop, but it had no significant effect on non-rhizosphere soil. In this study, T1 was beneficial to increase maize grain yield, while T5 was beneficial to maximize the Cd extraction amount of grain amaranth.