| [1] | 潘德成, 宋冬, 孟宪华, 等. 近50年辽西北半干旱区降水变化与花生水分适宜性评价. 干旱地区农业研究, 2013, 31(5): 9-13 [Pan D-C, Song D, Meng X-H, et al. Precipitation changes in recent 50 years and evaluation for water suitability of peanut in semi-arid area of northwest Liaoning Province. Agricultural Research in the Arid Areas, 2013, 31(5): 9-13] | 
																													
																						| [2] | 胡家齐, 夏桂敏, 张柏纶, 等. 调亏灌溉与施氮对花生产量及水氮利用的影响. 干旱地区农业研究, 2018, 36(5): 187-193 [Hu J-Q, Xia G-M, Zhang B-L, et al. Effects of regulated deficit irrigation and nitrogen application on growth, yield and water-nitrogen use of peanut. Agricultural Research in the Arid Areas, 2018, 36(5): 187-193] | 
																													
																						| [3] | Plaut Z, Ben-Hur M. Irrigation management of peanut with a moving sprinkler system. Agronomy Journal, 2005, 97: 1202-1209 | 
																													
																						| [4] | Kheira AAA. Macromanagement of deficit-irrigated peanut with sprinkler irrigation. Agricultural Water Management, 2009, 96: 1409-1420 | 
																													
																						| [5] | 夏桂敏, 褚凤英, 陈俊秀, 等. 基于膜下滴灌的不同灌水量对黑花生产量及水分利用效率的影响. 沈阳农业大学学报, 2015, 46(1): 119-123 [Xia G-M, Chu F-Y, Chen J-X, et al. Effects of different irrigation quota on yield and water use efficiency of black peanut with drip irrigation under film mulch. Journal of Shen-yang Agricultural University, 2015, 46(1): 119-123] | 
																													
																						| [6] | 王淑君, 夏桂敏, 李永发, 等. 生物炭基肥和水分胁迫对花生产量、耗水和养分吸收的影响. 水土保持学报, 2017, 31(6): 288-293 [Wang S-J, Xia G-M, Li Y-F, et al. Effects of biochar-based fertilizer and water stress on peanut yield, water consumption and nutrition absorption. Journal of Soil and Water Conservation, 2017, 31(6): 288-293] | 
																													
																						| [7] | van Dam JC, Groenendijk P, Hendriks RFA, et al. Advances of modeling water flow in variably saturated soils with SWAP. Vadose Zone Journal, 2008, 7: 640-653 | 
																													
																						| [8] | 徐旭, 黄冠华, 屈忠义, 等. 区域尺度农田水盐动态模拟模型—GSWAP. 农业工程学报, 2011, 27(7): 58-63 [Xu X, Huang G-H, Qu Z-Y, et al. Regional scale model for simulating soil water flow and solute transport processes: GSWAP. Transactions of the Chinese Society of Agricultural Engineering, 2011, 27(7): 58-63] | 
																													
																						| [9] | Xu X, Huang G, Zhan H, et al. Integration of SWAP and MODFLOW-2000 for modeling groundwater dyna-mics in shallow water table areas. Journal of Hydrology, 2012, 412-413: 170-181 | 
																													
																						| [10] | Simunek J, Sejna M, Saito H, et al. The HYDRUS-1D Software Package for Simulating the Movement of Water, Heat, and Multiple Solutes in Variably-Saturated Media, Version 4.08, HYDRUS Software Series 3. Riverside, CA, USA: Department of Environmental Sciences, University of California Riverside, 2009 | 
																													
																						| [11] | Kroes JG, van Dam JC. Reference Manual SWAP Version 3.0.3. Alterra-Report 773. Wageningen: Green World Research, 2003 | 
																													
																						| [12] | Williams JR, Jones CA, Kiniry JR, et al. The EPIC crop growth model. Transactions of the American Society of Agricultural and Biological Engineers, 1989, 32: 497-511 | 
																													
																						| [13] | Jones JW, Hoogenboom G, Porter CH, et al. The DSSAT cropping system model. European Journal of Agronomy, 2003, 18: 235-265 | 
																													
																						| [14] | 任东阳. 灌区多尺度农业与生态水文过程模拟. 博士论文. 北京: 中国农业大学, 2018 [Ren D-Y. Multi-scale Modeling of the Agro-Eco-Hydrological Processes in Irrigation District. PhD Thesis. Beijing: China Agricultural University, 2018] | 
																													
																						| [15] | Xu X, Huang G, Sun C, et al. AHC: An integrated numerical model for simulating agroecosystem processes: Model description and application. Ecological Modelling, 2018, 390: 23-29 | 
																													
																						| [16] | Morris MD. Factorial sampling plans for preliminary computation experiments. Technometrics, 1991, 33: 161-174 | 
																													
																						| [17] | Mckay MD, Beckman RJ, Conover WJ. A comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technome-trics, 1979, 21: 239-245 | 
																													
																						| [18] | 徐旭, 屈忠义, 黄冠华. 基于遗传算法的田间尺度土壤水力参数与溶质运移参数优化. 水利学报, 2012, 43(7): 808-815 [Xu X, Qu Z-Y, Huang G-H. Optimization of soil hydraulic and solute transport parameters using genetic algorithms at field scale. Journal of Hydraulic Engineering, 2012, 43(7): 808-815] | 
																													
																						| [19] | Allen RG, Pereira LS, Raes D, et al. Crop Evapotranspiration, Guidelines for Computing Crop Water Requirements. FAO Irrigation and Drainage Paper 56. Rome: FAO, 1998 | 
																													
																						| [20] | Xu X, Huang G, Sun C, et al. Assessing the effects of water table depth on water use, soil salinity and wheat yield: Searching for a target depth for irrigated areas in the upper Yellow River basin. Agricultural Water Management, 2013, 125: 46-60 | 
																													
																						| [21] | 徐旭, 黄冠华, 黄权中. 农田水盐运移与作物生长模型耦合及验证. 农业工程学报, 2013, 29(4): 110-117 [Xu X, Huang G-H, Huang Q-Z. Coupled simulation of soil water flow, solute transport and crop growth processes at field scale and its validation. Transactions of the Chinese Society of Agricultural Engineering, 2013, 29(4): 110-117] | 
																													
																						| [22] | Schaap MG, Leij FJ, van Genuchten MT. ROSETTA: A computer program for estimating soil hydraulic parameters with hierarchical pedotransfer functions. Journal of Hydrology, 2001, 251: 163-176 | 
																													
																						| [23] | van Dam JC, Huygen J, Wesseling JG, et al. Theory of SWAP Version 2.0, Simulation of Water Flow, Solute Transport and Plant Growth in Soil-Water-Atmosphere-Plant Environment. Alterra: Wageningen Agriculture University, 1997 | 
																													
																						| [24] | Xu X, Huang G, Sun C, et al. Global sensitivity analysis and calibration of parameters for a physically-based agro-hydrological model. Environmental Modelling & Software, 2016, 83: 88-102 | 
																													
																						| [25] | Legates DR, McCabe GJ, Evaluating the use of “goodness-of-fit”measures in hydrologic and hydroclimatic model validation. Water Resources Research, 1999, 35: 233-241 | 
																													
																						| [26] | Moriais DN, Arnold JG, van Liew MW. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Transactions of the American Society of Agricultural and Biological Engineers, 2007, 50: 885-900 | 
																													
																						| [27] | 王军, 李久生, 关红杰. 北疆膜下滴灌棉花产量及水分生产率对灌水量响应的模拟. 农业工程学报, 2016, 32(3): 62-68 [Wang J, Li J-S, Guan H-J, Modeling response of cotton yield and water productivity to irrigation amount under mulched drip irrigation in North Xinjiang. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(3): 62-68] | 
																													
																						| [28] | Zheng J, Huang G, Wang J, et al. Effects of water deficits on growth, yield and water productivity of drip-irrigated onion (Allium cepa) in arid region of Northwest China. Irrigation Science, 2013, 31: 995-1008 | 
																													
																						| [29] | 邢会敏, 相诗尧, 徐新刚, 等. 基于EFAST方法的AquaCrop作物模型参数全局敏感性分析. 中国农业科学, 2017, 50(1): 64-76 [Xing H-M, Xiang S-Y, Xu X-G, et al. Global sensitivity analysis of AquaCrop crop model parameters based on EFAST method. Scientia Agricultural Sinica, 2017, 50(1): 64-76] | 
																													
																						| [30] | 何亮, 侯英雨, 赵刚, 等. 基于全局敏感性分析和贝叶斯方法的WOFOST作物模型参数优化. 农业工程学报, 2016, 32(2): 169-179 [He L, Hou Y-Y, Zhao G, et al. Parameters optimization of WOFOST model by integration of global sensitivity analysis and Bayesian calibration method. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(2): 169-179] | 
																													
																						| [31] | 能锋田, 姜瑶, 徐旭, 等. 基于LH-OAT方法的SWAP-EPIC模型参数敏感性分析. 中国科技论文, 2016, 11(7): 739-745 [Neng F-T, Jiang Y, Xu X, et al. Sensitivity analysis for SWAP-EPIC model using the LH-OAT method. China Science Paper, 2016, 11(7): 739-745] | 
																													
																						| [32] | 王春晓, 王鹏, 郑祖林, 等. 不同花生品种主要品质指标变异及分类. 山东农业科学, 2019, 51(5): 29-33 [Wang C-X, Wang P, Zheng Z-L, et al. Variation of main quality indicators and classification of different peanut varieties. Shandong Agriculture Science, 2019, 51(5): 29-33] | 
																													
																						| [33] | 郑重, 马富裕, 慕自新, 等. 膜下滴灌棉花水肥耦合效应及其模式研究. 棉花学报, 2000, 12(4): 198-201 [Zheng Z, Ma F-Y, Mu Z-X, et al. Study of coupling effects and water-fertilizer model on mulched-cotton by drip irrigation. Cotton Science, 2000, 12(4): 198-201] | 
																													
																						| [34] | 夏桂敏, 张柏纶, 胡家齐, 等. 不同生育期连续调亏灌溉对花生生长及耗水过程的影响. 沈阳农业大学学报, 2018, 49(2): 180-187 [Xia G-M, Zhang B-L, Hu J-Q, et al. Response of growth and water consumption at different growth stages of peanut to continuous regulated deficit irrigation. Journal of Shenyang Agricultural University, 2018, 49(2): 180-187] |