欢迎访问《应用生态学报》官方网站,今天是 分享到:

应用生态学报 ›› 2021, Vol. 32 ›› Issue (1): 358-368.doi: 10.13287/j.1001-9332.202101.032

• 综合评述 • 上一篇    下一篇

微生物种间直接电子传递研究进展

兰建英1,2, 蒋海明1,2*, 李侠3   

  1. 1内蒙古科技大学生命科学与技术学院, 内蒙古包头 014010;
    2内蒙古自治区生物质能源化利用重点实验室, 内蒙古包头 014010;
    3内蒙古科技大学矿业研究院, 内蒙古包头 014010
  • 收稿日期:2020-08-30 接受日期:2020-10-09 出版日期:2021-01-15 发布日期:2021-07-15
  • 通讯作者: * E-mail: jhmhn@163.com
  • 作者简介:兰建英, 女, 1994年生, 硕士研究生。主要从事环境微生物学研究。E-mail: 1558271178@qq.com
  • 基金资助:
    国家自然科学基金项目(31560015,31860011,51864037)和内蒙古自然科学基金项目(2018LH03024)

Research advances in direct interspecies electron transfer within microbes

LAN Jian-ying1,2, JIANG Hai-ming1,2*, LI Xia3   

  1. 1School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou 014010, Inner Mongolia, China;
    2Inner Mongolia Key Laboratory of Biomass-Energy Conversion, Baotou 014010, Inner Mongolia, China;
    3Research Institute of Mining, Inner Mongolia University of Science and Technology, Baotou 014010, Inner Mongolia, China
  • Received:2020-08-30 Accepted:2020-10-09 Online:2021-01-15 Published:2021-07-15
  • Contact: * E-mail: jhmhn@163.com
  • Supported by:
    National Natural Science Foundation of China (31560015,31860011,51864037) and the Natural Science Foundation of Inner Mongolia (2018LH03024).

摘要: 一直以来氢气和甲酸被认为是微生物间电子传递的中间电子传递体。近年来的研究发现,微生物之间可以通过种间直接电子传递(DIET)来替代氢气/甲酸传递。DIET作为一种新发现的微生物间电子传递途径,其电子传递效率要高于传统的种间氢气/甲酸传递。DIET这一新发现改变了微生物互营生长代谢必须依赖氢气或甲酸等电子载体的传统认识,为今后研究微生物互营现象打开了新视角。虽然DIET研究取得了很大进展,但是目前对能够进行DIET的微生物种类、DIET机制及影响DIET的因素尚缺乏深入研究。本文首先概述了能形成DIET的微生物,然后重点分析了能够进行DIET的电子供体微生物胞外电子传递的机制和电子受体微生物直接利用胞外电子的分子机制,最后阐述了导电材料对DIET的影响,并提出了DIET今后的研究方向,旨在为DIET研究提供参考。

关键词: 种间直接电子传递, 电子供体微生物, 电子受体微生物, 互营生长, 导电材料, 胞外电子传递机制

Abstract: Hydrogen and formic acid have been considered as the intermediate electron transporters among microbes for a long time. In recent years, however, it has been found that direct interspecies electron transfer (DIET) might be an alternative beyond hydrogen/formic acid to transfer electron among microbes. As a new way of electron transfer among microbes, the electron transfer efficiency of DIET is higher than that of traditional hydrogen/formate transfer. The discovery of DIET has changed the traditional understanding that the growth and metabolism of microbial syntrophism must rely on electron carriers such as hydrogen or formic acid, and also has opened a new perspective for the study of microbial interaction. Although great progress has been made in the study of DIET, in-depth studies are still lacking on the microbes that can form co-culture via DIET, the mechanism of DIET, and the factors affecting DIET. In this review, we summarized the microbes that can form DIET, the mechanism underlying the extracellular electron transfer of microbe acted as electron donor in DIET, as well as the mechanism underlying the extracellular electron transfer of microbe acted as electron acceptor in DIET. The effects of conductive materials on DIET were elaborated, and several research directions for DIET were proposed, with the aim to mitigate performance degradation and facilitate research and development in this area.

Key words: direct interspecies electron transfer, electron donor microorganism, electron acceptor microorganism, syntrophic growth, conductive material, extracellular electron transfer mechanism