应用生态学报 ›› 2021, Vol. 32 ›› Issue (2): 729-736.doi: 10.13287/j.1001-9332.202102.039
雍婕, 程益, 周海燕*
收稿日期:
2020-06-03
接受日期:
2020-11-04
出版日期:
2021-02-15
发布日期:
2021-08-15
通讯作者:
*E-mail: sws001@163.com
作者简介:
雍 婕, 女, 1992年生, 博士研究生。主要从事酶工程研究。E-mail: 442855532@qq.com
基金资助:
YONG Jie, CHENG Yi, ZHOU Hai-yan*
Received:
2020-06-03
Accepted:
2020-11-04
Online:
2021-02-15
Published:
2021-08-15
Contact:
*E-mail: sws001@163.com
Supported by:
摘要: 我国地膜使用量已占农业塑料薄膜使用量的半数以上,其大规模使用在带来巨大经济价值的同时也造成了“白色污染”,残膜难回收、难降解,直接影响土壤的再生能力。本文综述了我国地膜使用现状及其降解方面的研究进展,分别对地膜降解的生物与非生物途径和机理进行了概括,重点分析了非生物降解途径中光催化、金属离子掺杂等对聚烯烃降解的协同效应,以及生物降解途径中不同来源的菌和酶对聚烯烃降解效率的影响,并展望未来发展出更为高效的地膜降解方式,为后续地膜降解及环境中微塑料的降解研究提供参考。
雍婕, 程益, 周海燕. 地膜降解途径及机理研究进展[J]. 应用生态学报, 2021, 32(2): 729-736.
YONG Jie, CHENG Yi, ZHOU Hai-yan. Advances in researches of the mulch-film degradation and the underlying mechanism[J]. Chinese Journal of Applied Ecology, 2021, 32(2): 729-736.
[1] William JL. Plastic mulches for the production of vegetable crops. HortTechnology, 1993, 3: 35-39 [2] Liu G, Zuo Y, Zhang Q, et al. Ridge-furrow with plastic film and straw mulch increases water availability and wheat production on the Loess Plateau. Scentific Reports, 2018, 8: 6503-6523 [3] 王俊, 李凤民, 宋秋华, 等. 地膜覆盖对土壤水温和春小麦产量形成的影响. 应用生态学报, 2003, 14(2): 205-210 [Wang J, Li F-M, Song Q-H, et al. Responses of soil respiration to temperature under diffe-rent mulching modes in a dryland corn field. Chinese Journal of Applied Ecology, 2003, 14(2): 205-210] [4] 张琳琳, 孙仕军, 陈志君, 等. 不同颜色地膜与种植密度对春玉米干物质积累和产量的影响. 应用生态学报, 2018, 29(1): 116-127 [Zhang L-L, Sun S-J, Chen Z-J, et al. Effects of different colored plastic film mulching and planting density on dry matter accumulation and yield of spring maize. Chinese Journal of Applied Ecology, 2018, 29(1): 116-127] [5] 于显枫, 赵记军. CNKI 期刊视域下降解地膜研究态势文献计量分析. 中国农学通报, 2020, 36(8): 119-126 [Yu X-F, Zhao J-J. Research situation of degradable mulching film: Bibliometric analysis based on CNKI journals. Chinese Agricultural Science Bulletin, 2020, 36(8): 119-126] [6] 马兆嵘, 刘有胜, 张芊芊, 等. 农用塑料薄膜使用现状与环境污染分析. 生态毒理学报, 2020, 15, doi:10.7524/AJE.1673-5897.20191010002 [Ma Z-R, Liu Y-S, Zhang Q-Q, et al. The usage and environmental pollution of agricultural plastic film. Asian Journal of Ecotoxicology, 2020, 15, doi:10.7524/AJE.1673-5897.20191010002] [7] 国家统计局. 中国农村统计年鉴(1992-2018). 北京:中国统计出版社, 2019 [National Bureau of Statistics. China Rural Statistical Yearbook [1992-2018]. Beijing: China Statistical Press, 2019] [8] Liu EK, He WQ, Yan CR. ‘White revolution’ to ‘white pollution’: Agricultural plastic film mulch in China. Environmental Research Letters,2014,9: 091001 [9] Espi E, Salmeron A, Fontecha A, et al. Plastic films for agricultural applications. Journal of Plastic Film and Sheeting, 2006, 22: 85-102 [10] Pathak VM, Navneet. Review on the current status of polymer degradation: A microbial approach. Bioresources and Bioprocessing, 2017, 4: 15-45 [11] 董合干, 刘彤, 李勇冠, 等. 新疆棉田地膜残留对棉花产量及土壤理化性质的影响. 农业工程学报, 2013, 29(8): 91-99 [Dong H-G, Liu T, Li Y-G, et al. Effects of plastic film residue on cotton yield and soil physical and chemical properties in Xinjiang. Transactions of the Chinese Society of Agricultural Engineering,2013, 29(8): 91-99] [12] 汪军, 杨杉, 陈刚才, 等. 我国设施农业农膜使用的环境问题刍议. 土壤, 2016, 48(5): 863-867 [Wang J, Yang S, Chen G-C, et al. Environmental problems and countermeasures of mulch film application in intensive agriculture system in China. Soils, 2016, 48(5): 863-867] [13] Dick RP, Myrold DD, Kerle EA. Microbial biomass and soil enzyme activities in compacted and rehabilitated skid trail soil. Soil Science Society of America Journal, 1988, 52: 512-516 [14] 陈锡时, 郭树凡. 地膜覆盖栽培对土壤微生物种群和生物活性的影响. 应用生态学报, 1998, 9(4): 435-439 [Chen X-S, Guo S-F. Effect of mulching cultivation with plastic film on soil microbial population and biological activity. Chinese Journal of Applied Ecology, 1998, 9(4): 435-439] [15] Chen YS, Wu CF, Zhang HB, et al. Empirical estimation of pollution load and contamination levels of phthalate esters in agricultural soils from plastic film mulching in China. Environmental Earth Sciences, 2013, 70: 239-247 [16] Yan CG, He WQ, Neil CT, et al. Plastic-film mulch in Chinese agriculture: Importance and problems. World Agriculture, 2014, 4: 32-36 [17] 裴新民, 杨万章, 张艳彬. 残地膜回收资源化利用的几个需要理清的观念及几点建议. 中国农机化学报, 2017, 38(10): 112-114 [Pei X-M,Yang W-Z, Zhang Y-B. Some concepts which need to be sorted out and suggestions for the use of residual film recycling resources. Journal of Chinese Agricutural Mechanization, 2017, 38(10): 112-114] [18] 靳拓, 薛颖昊, 张明明, 等. 国内外农用地膜使用政策、执行标准与回收状况. 生态环境学报, 2020, 29(2): 411-420 [Jin T, Xue Y-H, Zhang M-M, et al. Research advances in regulations, standards and reco-very of mulch film. Ecology and Environmental Sciences, 2020, 29(2): 411-420] [19] Taylor FN, Stephanie CR, Hans PK, et al. Quantification of synthetic polyesters from biodegradable mulch films in soils. Environmental Science and Technology, 2020, 54: 266-275 [20] Hemphill DD. Agricultural plastics as solid waste: What are the options for disposal? HortTechnology, 1993, 3: 70-73 [21] 农业农村部、国家发展改革委、工业和信息化部、财政部、生态环境部、国家市场监督管理总局. 关于加快推进农用地膜污染防治的意见. 中华人民共和国农业农村部公报, 2019(7): 10-12 [Ministry of Agriculture and Rural Affairs, National Development and Reform Commission, Ministry of Industry and Information Technology, Ministry of Finance, Ministry of Ecological Environment, State Administration for Market Regulation. Suggestions on accelerating the prevention and control of agricultural plastic film pollution. Gazette of the Ministry of Agriculture of the People’s Republic of China, 2019(7): 10-12] [22] Shah AA, Hasan F, Hameed A, et al. Biological degradation of plastics: A comprehensive review. Biotechnology Advances, 2008, 26: 246-265 [23] Albertsson AC, Andersson SO, Karlsson S. The mechanism of biodegradation of polyethylene. Polymer Degradation and Stability, 1987, 18: 73-87 [24] Bikiaris D, Aburto J, Alric IB, et al. Mechanical pro-perties and biodegradability of LDPE blends with fatty-acid esters of amylase and starch. Journal of Applied Polymer Science, 1999, 71: 1089-1100 [25] Scott G. Polymers and the Environment. Cambridge: Royal Society of Chemistry, 1999 [26] Scott G, Wiles DM. Programmed-life plastics from polyo-lefins: A new look at sustainability. Biomacromolecules, 2001, 2: 615-622 [27] Bonhomme S, Cuer A, Delort AM, et al. Environmental biodegradation of polyethylene. Polymer Degradation and Stability, 2003, 81: 441-452 [28] Ammala A, Bateman S, Dean K, et al. An overview of degradable and biodegradable polyolefins. Progress in Polymer Science, 2011, 36: 1015-1049 [29] Roohi, Bano K, Kuddus M, et al. Microbial enzymatic degradation of biodegradable plastics. Current Pharmaceutical Biotechnology, 2017, 18: 429-440 [30] Albertsson AC, Karlsson S. The three stages in degradation of polymers-polyethylene as a model substance. Journal of Applied Polymer Science, 1988, 35: 1289-1302 [31] Briassoulis D, Babou E, Hiskakis M, et al. Degradation in soil behavior of artificially aged polyethylene films with pro-oxidants. Journal of Applied Polymer Science, 2015, 132: 42289-42295 [32] 李真, 何文清, 刘恩科, 等. 聚乙烯地膜降解过程与机理研究进展. 农业环境科学学报, 2019, 38(2): 268-275 [Li Z, He W-Q, Liu E-K, et al. A review on polyethylene mulch film degradation. Journal of Agro-Environment Science, 2019, 38(2): 268-275] [33] Varghese OK, Paulose M, Latempa TJ, et al. High-rate solar photocatalytic conversion of CO2 and water vapor to hydrocarbon fuels. Nano Letters, 2009, 9: 731-737 [34] Neau S, Maciá-Agulló J, Garcia H. Solar light photoca-talytic CO2 reduction: General considerations and selec-ted Bench-Mark photocatalysts. International Journal of Molecular Sciences, 2014, 15: 5246-5262 [35] Maciá A, Juan A, Corma A, et al. Photobiocatalysis: The power of combining photocatalysis and enzymes. Chemistry: A European Journal, 2015, 21: 10940-10959 [36] Lee JS, Nam DH, Kuk SK, et al. Near-infrared-light-driven artificial photosynthesis by nanobiocatalytic assemblies. Chemistry: A European Journal, 2014, 20: 3852-3852 [37] 杨昌军, 彭天右, 邓克俭, 等. 固相光催化降解废弃塑料. 化学进展, 2011, 23(5): 874-879 [Yang C-J, Peng T-Y, Deng K-J, et al. Solid-phase photocatalytic degradation of waste plastics. Progress in Chemistry, 2011, 23(5): 874-879] [38] Barrón V, Méndez JM, Balbuena J, et al. Photochemical emission and fixation of NOX gases in soils. Science of the Total Environment, 2020, 702: 134982 [39] Ndahebwa MC, Huxley M, Gabriel M, et al. Biodegra-dability of polyethylene by bacteria and fungi from Dan-dora dumpsite Nairobi-Kenya. PLoS One, 2018, 13(7): e0198446 [40] Müller R. Biodegradability of Polymers: Regulations and Methods for Testing. London: Wiley-Verlag, 2005 [41] Giacomucci L, Raddadi N, Soccio M, et al. Polyvinyl chloride biodegradation by Pseudomonas citronellolis and Bacillus flexus. New Biotechnology, 2019, 52: 35-41 [42] Sen SK, Raut S. Microbial degradation of low-density polyethylene (LDPE): A review. Journal of Environmental Chemical Engineering, 2015, 3: 462-473 [43] Vimala PP, Mathew L. Biodegradation of polyethylene using Bacillus subtilis. Procedia Technology, 2016, 24: 232-239 [44] Ojha N, Pradhan N, Singh S, et al. Evaluation of HDPE and LDPE degradation by fungus, implemented by statistical optimization. Scientific Reports, 2017, 7: 39515-39528 [45] Veethahavya KS, Rajath BS, Noobia S, et al. Biodegradation of low density polyethylene in aqueous media. Procedia Environmental Sciences, 2016, 35: 709-713 [46] Restrepo-Florez JM, Bassi A, Thompson MR. Microbial degradation and deterioration of polyethylene: A review. International Biodeterioration and Biodegradation, 2014, 88: 83-90 [47] Yang J, Yang Y, Wu WM, et al. Evidence of polyethylene biodegradation by bacterial strains from the guts of plastic eating waxworms. Environmental Science and Technology, 2014, 48: 13776-13784 [48] Yang Y, Yang J, Wu WM, et al. Biodegradation and mineralization of polystyrene by plastic-eating mealworms. Ⅰ. Chemical and physical characterization and isotopic tests. Environmental Science and Technology, 2015, 49: 12080-12086 [49] Yang Y, Yang J, Wu WM, et al. Biodegradation and mineralization of polystyrene by plastic-eating mealworms. Ⅱ. Role of gut microorganisms. Environmental science and Technology, 2015, 49: 12087-12093 [50] Herrero Acero E, Ribitsch D, Steinkellner G, et al. Enzymatic surface hydrolysis of PET: Effect of structural diversity on kinetic properties of cutinases from Thermobifida. Macromolecules, 2011, 44: 4632-4640 [51] Sharon C, Sharon M. Studies on biodegradation of polye-thylene terephthalate: A synthetic polymer. Journal of Microbiology and Biotechnology Research, 2012, 2: 248-257 [52] Wei R, Zimmermann W. Biocatalysis as a green route for recycling the recalcitrant plastic polyethylene terephthalate. Microbial Biotechnology, 2017, 10: 1302-1307 [53] Gross RA, Kalra B. Biodegradable polymers for the environment. Science, 2002, 297: 803-807 [54] Breulmann M, Künkel A, Philipp S, et al. Polymers, Biodegradable// Othmer K, eds. Ullmans Encyclopedia of industrial Chemistry. London: Wiley, 2016: 1-29 [55] Swift G. Directions for environmentally biodegradable polymer research. Accounts of Chemical Research, 1993, 26: 105-110 [56] Tribedi P, Sil AK. Low-density polyethylene degradation by Pseudomonas sp. AKS2 biofilm. Environmental Science and Pollution Research, 2013, 20: 4146-4153 [57] Gilan I, Hadar Y, Sivan A. Colonization, Biofilm formation and biodegradation of polyethylene by a strain of Rhodococcus ruber. Applied Microbiology and Biotechno-logy, 2004, 65: 97-104 [58] Sivan A, Szanto M, Pavlov V. Biofilm development of the polyethylene-degrading bacterium Rhodococcus ruber. Applied Microbiology and Biotechnology, 2006, 72: 346-352 [59] Santo M, Weitsman R, Sivan A. The role of the copper-binding enzyme-laccase in the biodegradation of polyethy-lene by the actinomycete Rhodococcus ruber. International Biodeterioration and Biodegradation, 2013, 84: 204-210 [60] Harshvardhan K, Jha B. Biodegradation of low-density polyethylene by marine bacteria from pelagic waters, Arabian Sea, India. Marine Pollution Bulletin, 2013, 77: 100-106 [61] Balasubramanian V, Natarajan K, Hemambika B, et al. High-density polyethylene (HDPE)-degrading potential bacteria from marine ecosystem of gulf of mannar, India. Letters in Applied Microbiology, 2010, 51: 205-211 [62] 苗少娟, 张雅林. 大麦虫 Zophobas morio 对塑料的取食和降解作用研究. 环境昆虫学报, 2010, 32(4): 435-444 [Miao S-J, Zhang Y-L. Feeding and degradation effect on plastic of Zophobasmorio. Journal of Environmental Entomology, 2010, 32(4): 435-444] [63] Li G, Park S, Rittmann BE. Developing an efficient TiO2-coated biofilm carrier for intimate coupling of photocatalysis and biodegradation. Water Research, 2012, 46: 6489-6496 [64] Rittmann BE. Biofilms active substrata and me. Water Research, 2018, 132: 135-145 [65] Choudhury S, Baeg JO, Park NJ, et al. Photocatalyst/enzyme couple that uses solar energy in the asymmetric reduction of acetophenones. Angewandte Chemie, 2012, 124: 11792-11796 [66] Kou J, Lu C, Wang J, et al. Selectivity enhancement in heterogeneous photocatalytic transformations. Chemical Reviews, 2017, 117: 1445-1514 |
[1] | 孙颖, 高颖, 陈惠, 司友涛, 鲍勇, 焦宏哲. 亚热带米槠林不同更新方式对土壤可溶性有机质降解性的影响 [J]. 应用生态学报, 2020, 31(4): 1073-1082. |
[2] | 黄茜, 蒋梦莹, 王丽晓, 楼莉萍. 竹炭固定化微生物对水中壬基酚的降解效率 [J]. 应用生态学报, 2018, 29(5): 1677-1685. |
[3] | 王宁, 冯克云, 南宏宇, 李亚兵. 生物降解膜对甘肃河西棉花的生态生物学效应 [J]. 应用生态学报, 2018, 29(11): 3607-3614. |
[4] | 王莎飞, 郭彩荣, 徐向阳, 朱亮. 环境水体藻毒素生物处理技术研究进展 [J]. 应用生态学报, 2016, 27(5): 1683-1692. |
[5] | 李红亚1,李术娜1,王树香1,王全1,薛茵茵2,朱宝成1**. 解淀粉芽孢杆菌MN-8对玉米秸秆木质纤维素的降解 [J]. 应用生态学报, 2015, 26(5): 1404-1410. |
[6] | 梁志锋1,周文1,林庆祺1,杨秀虹1,2**,王诗忠1,2,蔡信德3,仇荣亮1,2. 城市污泥中邻苯二甲酸酯(PAEs)的厌氧微生物降解 [J]. 应用生态学报, 2014, 25(4): 1163-1170. |
[7] | 鲁亢,杨尚源**,梁志伟,王云龙,李鑫,余华东,吴伟祥. 有机物生物降解性评价方法综述 [J]. 应用生态学报, 2013, 24(2): 597-606. |
[8] | 岳芳宁1,2,3,罗水明1,2,3,张承东1,2,3**. 人工碳纳米材料在环境中的降解与转化研究进展 [J]. 应用生态学报, 2013, 24(2): 589-596. |
[9] | 胡凤钗,李新宇,苏振成,王秀娟,张惠文,孙军德. 三株降解芘的戈登氏菌鉴定及其降解能力 [J]. 应用生态学报, 2011, 22(07): 1857-1862. |
[10] | 胡凤钗,苏振成,孙健,李旭,张惠文,孙军德. 高效芘降解菌N12的分离鉴定与降解特性 [J]. 应用生态学报, 2011, 22(06): 1566-1572. |
[11] | 孔赟,徐向阳,朱亮,徐京,林海转. 环境水体微囊藻毒素微生物降解技术研究进展 [J]. 应用生态学报, 2011, 22(06): 1646-1652. |
[12] | 董怡华,胡筱敏,和英滇,李亮. 共代谢条件下光合细菌对2-氯苯酚的生物降解 [J]. 应用生态学报, 2011, 22(05): 1280-1286. |
[13] | 王世杰,王翔,卢桂兰,汪群慧,李发生,郭观林. 低温微生物修复石油烃类污染土壤研究进展 [J]. 应用生态学报, 2011, 22(04): 1082-1088. |
[14] | 王春阳,周建斌,夏志敏,陈兴丽. 黄土高原区不同植物凋落物可溶性有机碳含量及其降解 [J]. 应用生态学报, 2010, 21(12): 3001-3006. |
[15] | 张巧巧,赵叶君,杨超光,刘奋武,何 健,沈 标,冉 炜. 一株芘降解菌的分离鉴定及其降解效果 [J]. 应用生态学报, 2010, 21(07): 1851-1858. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||