欢迎访问《应用生态学报》官方网站,今天是 分享到:

应用生态学报 ›› 2021, Vol. 32 ›› Issue (5): 1768-1776.doi: 10.13287/j.1001-9332.202105.025

• 研究论文 • 上一篇    下一篇

铁胁迫下大豆光合和磷/铁性状对磷素的响应

赵婧, 孟凡钢, 于德彬, 张鸣浩, 饶德民, 丛博韬, 闫晓艳, 张伟*, 邱强   

  1. 吉林省农业科学院大豆研究所/大豆国家工程研究中心, 长春 130033
  • 收稿日期:2020-11-03 接受日期:2021-02-21 出版日期:2021-05-15 发布日期:2021-11-15
  • 通讯作者: *E-mail: zw.0431@163.com
  • 作者简介:赵婧,女,1984年生,硕士研究生。主要从事大豆栽培生理生态研究。E-mail:zhao114434260@163.com
  • 基金资助:
    国家重点研发计划项目(2018YFD1000905)和吉林省现代农业产业技术示范推广项目(2020-004)资助

Responses of photosynthesis and P/Fe traits to P application in soybean under stress of low Fe.

ZHAO Jing, MENG Fan-gang, YU De-bin, ZHANG Ming-hao, RAO De-min, CONG Bo-tao, YAN Xiao-yan, ZHANG Wei*, QIU Qiang   

  1. National Engineering Research Center of Soybean/Soybean Research Institute, Jilin Academy of Agricultural Sciences, Changchun 130033, China
  • Received:2020-11-03 Accepted:2021-02-21 Online:2021-05-15 Published:2021-11-15
  • Contact: *E-mail: zw.0431@163.com
  • Supported by:
    National Key Research and Development Program of China (2018YFD1000905) and the Demonstration and Popularization of Modern Agricultural Industrial Technology in Jilin Province (2020-004).

摘要: 为了明确低铁胁迫下磷素用量对大豆光合和磷/铁性状的影响及基因型差异,为磷、铁肥的合理施用提供理论依据,以前期筛选的6个磷高效基因型和6个磷低效基因型大豆为供试材料,设4个P∶Fe配比处理,分别为0∶30、30∶30、150∶30和300∶30(μmol·L-1),对大豆叶绿素荧光特性和磷、铁利用率进行了测定,利用单株粒重建立逐步回归方程并进行通径分析,通过因子得分综合评价磷高效和磷低效基因型对不同P∶Fe处理的响应。结果表明: 基因型效应、P∶Fe处理效应和两者互作效应对始花期(R1)光系统Ⅱ的相对电子传递速率(ETR)、光系统Ⅱ吸收的能量用于耗散为热量的比例(NPQ)、光系统Ⅱ吸收的能量用于进行光化学反应的比例(qL)的影响均达显著水平。典型相关分析表明,磷高效大豆基因型完熟期(R8)籽粒磷利用率与R1期光合速率呈负相关;磷低效大豆基因型R8期籽粒铁利用率与R1期NPQ呈正相关关系,而与R1期qL呈负相关关系;R1期PSⅡ实际光化学效率(ΦPSⅡ)与磷高效基因型呈负相关,而与磷低效基因型呈正相关,这表明R1期ΦPSⅡ可以作为鉴定低铁条件下不同磷效率大豆基因型的一个重要指标。利用因子得分综合评价发现,磷高效基因型表现为随着磷水平的上升而先降后升,而磷低效基因型则为先升后降,但两者拐点均出现在P∶Fe为30∶30处理下,这表明在低铁条件下P∶Fe为30∶30可以作为鉴定不同磷效率基因型的一个临界值。因而,在低铁地区种植磷高效大豆基因型时,磷肥的施用量至少要大于1∶1 (P∶Fe);而种植磷低效基因型时,磷肥的施用量不宜超过1∶1 (P∶Fe)。

关键词: 叶绿素荧光特性, 磷利用率, 铁利用率, 磷:铁

Abstract: We examined the effects of phosphorus (P) levels on photosynthetic and P/Fe traits of soybean under the stress of low Fe and their genotypic differences, to provide a theoretical basis for rational application of P and Fe fertilizer. Six P-efficient and six P-inefficient soybean varieties screened in the early stage were used as experimental materials. Four treatments of P:Fe ratio were set, including 0:30, 30:30, 150:30 and 300:30 (μmol·L-1). We measured chlorophyll fluorescence traits and P-Fe utilization efficiency in soybean. A stepwise regression equation was established with seed weight per plant. Pathway analysis was performed, with the response of P-efficient and P-inefficient soybean genotypes to different P:Fe treatments being comprehensively evaluated by factor scores. The results showed significant main and interactive effects of genotype and P:Fe on the relative electron transfer rate of photosystem Ⅱ (ETR) at beginning of flowering stage (R1), the proportion of the energy absorbed by photosystem Ⅱ dissipated into heat (NPQ) at R1 stage, and proportion of energy absorbed by photosystem Ⅱ devoted to the photochemical reaction (qL) at R1 stage. Results of canonical correlation analysis showed a negative correlation between P utilization efficiency of seed at full maturity stage (R8) and photosynthetic rate at R1 stage of P-efficient genotypes. Seed Fe utilization efficiency of P-inefficient genotypes at R8 stage was positively correlated with NPQ at R1 stage, but negatively correlated with qL at R1 stage. The actual photochemical efficiency of PSⅡ (ΦPSⅡ) at R1 stage was negatively correlated with P-efficient genotypes, but positively correlated with P-inefficient genotypes, which indicated that ΦPSⅡ at R1 stage was an important indicator for identifying soybean genotypes with different P efficiency under stress of low Fe. The comprehensive performance of P-efficient soybean genotypes decreased first and then increased with P level, while P-inefficient soybean genotypes increased first and then decreased. The inflection point of both genotypes appeared in P:Fe of 30:30. Thus, P:Fe ratio of 30:30 could be used as a threshold to identify soybean genotypes with different P efficiency under stress of low Fe. In conclusion, P fertilizer application should be equal to or greater than 1:1 (P:Fe) when planting P-efficient soybean genotypes in low Fe area, while P fertilizer application should not exceed 1:1 (P:Fe) when planting P-inefficient soybean genotypes.

Key words: chlorophyll fluorescence trait, P utilization efficiency, Fe utilization efficiency, P:Fe