应用生态学报 ›› 2021, Vol. 32 ›› Issue (8): 3010-3022.doi: 10.13287/j.1001-9332.202108.020
田北辰*, 李沛权, 黄千杜
收稿日期:
2021-02-19
接受日期:
2021-05-31
出版日期:
2021-08-15
发布日期:
2022-02-15
通讯作者:
*E-mail: btianGeo@163.com
作者简介:
田北辰, 男, 1991年生, 硕士研究生。主要从事地理信息科学在城市与区域规划领域的应用研究。E-mail: btianGeo@163.com
基金资助:
TIAN Bei-chen*, LI Pei-quan, HUANG Qian-du
Received:
2021-02-19
Accepted:
2021-05-31
Online:
2021-08-15
Published:
2022-02-15
Contact:
*E-mail: btianGeo@163.com
Supported by:
摘要: 基于鸟类移动特征与栖息地需求的生态廊道不仅有利于减少由生境丧失与生境破碎化导致的物种灭绝,进而促进物种的基因扩散与交流,而且可以改善城市居民的身心健康,推动城市不动产增值。然而,迄今为止,由国外学者研发的主要生态廊道构建方法没有内在地考虑鸟类的移动与生境特征,国内学者的鸟类生态廊道研究则侧重于对技术方法的探索而缺乏对研究鸟种特征的认知。因此,基于鸟类视角的城市生态廊道构建研究尚有较大的改进空间。本文通过对1975—2020年的国内外相关研究进行分析,识别出了可结合鸟类生态的7种廊道构建方法及3种廊道优化方法,并总结了相关方法的优缺点及其适用情况。最后,本文认为将典型鸟类物种的观测数据、真实运动能力与景观结构相融合,研发出计算高效便捷而且能够模拟廊道生态效益的计算机模型,将会是鸟类生态廊道构建方法的发展趋势。
田北辰, 李沛权, 黄千杜. 基于鸟类视角的城市生态廊道构建方法研究综述[J]. 应用生态学报, 2021, 32(8): 3010-3022.
TIAN Bei-chen, LI Pei-quan, HUANG Qian-du. Construction methods of urban ecological corridor for birds: A review[J]. Chinese Journal of Applied Ecology, 2021, 32(8): 3010-3022.
[1] Beier P, Noss RF. Do habitat corridors provide connectivity? Conservation Biology, 1998, 12: 1241-1252 [2] Strohbach MW, Haase D, Kabisch N. Birds and the city: Urban biodiversity, land use, and socioeconomics. Ecology and Society, 2009, 14, doi: 10.5751/ES-03141-140231 [3] Nor ANM, Corstanje R, Harris JA, et al. Ecological connectivity networks in rapidly expanding cities. Heli-yon, 2017, 3: e00325 [4] De Montis A, Caschili S, Mulas M, et al. Urban-rural ecological networks for landscape planning. Land Use Policy, 2016, 50: 312-327 [5] De Torre R, Jiménez MD, Ramírez Á, et al. Use of restoration plantings to enchance bird seed dispersal at the roadside: Failures and prospects. Journal of Environmental Engineering and Landscape Management, 2015, 23: 302-311 [6] Heleno RH, Ross G, Everard A, et al. The role of avian “seed predators” as seed dispersers. Ibis, 2011, 153: 199-203 [7] Farmer MC, Wallace MC, Shiroya M. Bird diversity indicates ecological value in urban home prices. Urban Ecosystems, 2013, 16: 131-144 [8] Barth BJ, Gibbon SIF, Wilson RS. New urban developments that retain more remnant trees have greater bird diversity. Landscape and Urban Planning, 2015, 136: 122-129 [9] Pollack L, Ondrasek NR, Calisi R. Urban health and ecology: The promise of an avian biomonitoring tool. Current Zoology, 2017, 63: 205-212 [10] Hedblom M, Heyman E, Antonsson H, et al. Bird song diversity influences young people’s appreciation of urban landscapes. Urban Forestry & Urban Greening, 2014, 13: 469-474 [11] Beatley T, Newman P. Biophilic cities are sustainable, resilient cities. Sustainanility, 2013, 5: 3328-3345 [12] Geoffrey G. Outdoor recreation, health, and wellness: Understanding and enhancing the relationship. SSRN Electronic Journal, 2009, doi: 10.2139/ssrn.1408694 [13] Curtin S. Wildlife tourism: The intangible, psychological benefits of human-wildlife encounters. Current Issues in Tourism, 2009, 12: 451-474 [14] Mudd DR. Touchet River Study: Part 1. Olympia, WA, USA: Washington Department of Fish and Game, 1975 [15] Galli A, Charles L, Forman R. Avian distribution patterns in forest islands of different sizes in Central New Jersey. The Auk, 1976, 93: 356-364 [16] Stauffer F, Best LB. Habitat selection by birds of ripa-rian communities: Evaluating effects of habitat alterations. Journal of Wildlife Management, 1980, 44: 1-15 [17] Soule ME, Bolger DT, Alberts AC, et al. Reconstructed dynamics of rapid extinctions of chaparral: Requiring birds in urban habitat islands. Conservation Biology, 1988, 2: 75-92 [18] Simberloff D, Cox J. Consequences and costs of conservation corridors. Conservation Biology, 1987, 1: 63-71 [19] McIntyre NE. Effects of forest patch size on avian diversity. Landscape Ecology, 1995, 10: 85-99 [20] Hawrot RY, Niemi GJ. Effects of edge type, patch shape, and patch size on avian communities in a mixed conifer-northern hardwood forest. The Auk, 1996, 113: 586-598 [21] Burke DM, Nol E. Influence of food abundance, nest-site habitat, and forest fragmentation on breeding Ovenbirds. The Auk, 1998, 115: 96-104 [22] Hinsley SA, Bellamy PE, Enoksson B, et al. Geogra-phical and land-use influences on bird species richness in small woods in agricultural landscapes. Global Ecology and Biogeography Letters, 1998, 7: 125-135 [23] Weinberg HJ, Roth R. Forest area and habitat quality for nesting wood thrushes. The Auk, 1998, 115: 879-889 [24] Kilgo JC, Miller KV, Smith WP. Effects of group-selection timber harvest in bottomland hardwoods on fall migrant birds. Journal of Field Ornithology, 1999, 70: 404-413 [25] Desrochers A, Hannon SJ. Gap crossing decisions by forest songbirds during the post-fledging period. Conservation Biology, 1997, 11: 1204-1210 [26] Rail JF, Darveau M, Desrochers A, et al. Territorial responses of boreal forest birds to habitat gaps. The Condor, 1997, 99: 976-980 [27] St Clair CC, Bélisle M, Desrochers A, et al. Winter responses of forest birds to habitat corridors and gaps. Conservation Ecology, 1998, 2, doi: 10.5751/es-00068-020213 [28] Grubb TC, Doherty PF. On home-range gap-crossing. The Auk, 1999, 116: 618-628 [29] Cantwell MD, Forman RTT. Landscape graphs: Ecological modeling with graph theory to detect configurations common to diverse landscapes. Landscape Ecology, 1993, 8: 239-255 [30] Brooker L, Brooker M, Cale P. Animal dispersal in fragmented habitat: Measuring habitat connectivity, corridor use, and dispersal mortality. Conservation Ecology, 1999, 3: 1-22 [31] Bunn AG, Urban DL, Keitt TH. Landscape connectivity: A conservation application of graph theory. Journal of Environmental Management, 2000, 59: 265-278 [32] Adriaensen F, Chardon JP, De Blust G, et al. The application of ‘least-cost’ modelling as a functional landscape model. Landscape and Urban Planning, 2003, 64: 233-247 [33] McRae BH, Dickson BG, Keitt TH, et al. Using circuit theory to model connectivity in ecology, evolution, and conservation. Ecology, 2008, 89: 2712-2724 [34] Beier P, Majka D, Jenness J. Conceptual Steps for Designing Wildlife Corridors [EB/OL]. (2009-12-21) [2020-11-09]. http://corridordesign.org/dl/docs/ConceptualStepsForDesigningCorridors.pdf [35] 俞孔坚, 李迪华, 段铁武. 生物多样性保护的景观规划途径. 生物多样性, 1998, 6(3): 205-212 [Yu K-J, Li D-H, Duan T-W. Landscape approaches in biodiversity conservation. Chinese Biodiversity, 1998, 6(3): 205-212] [36] 朱强, 俞孔坚, 李迪华. 景观规划中的生态廊道宽度. 生态学报, 2005, 25(9): 2406-2412 [Zhu Q, Yu K-J, Li D-H. The width of ecological corridor in landscape planning. Acta Ecologica Sinica, 2005, 25(9): 2406-2412] [37] Jim CY, Chen SS. Comprehensive greenspace planning based on landscape ecology principles in compact Nanjing City, China. Landscape and Urban Planning, 2003, 65: 95-116 [38] 黄晓凤. 白颈长尾雉活动区和栖息地研究. 博士论文. 北京: 北京林业大学, 2008 [Huang X-F. Study on Home Range and Habitat of Elliot’s Pheasant (Syrmaticus ellioti). PhD Thesis. Beijing: Beijing Forestry University, 2008] [39] 吴昌广, 周志翔, 王鹏程, 等. 基于最小费用模型的景观连接度评价. 应用生态学报, 2009, 20(8): 2042-2048 [Wu C-G, Zhou Z-X, Wang P-C, et al. Evaluation of landscape connectivity based on least cost model. Chinese Journal of Applied Ecology, 2009, 20(8): 2042-2048] [40] 富伟, 刘世梁, 崔保山, 等. 景观生态学中生态连接度研究进展. 生态学报, 2009, 29(11): 6174-6182 [Fu W, Liu S-L, Cui B-S, et al. A review on ecological connectivity in landscape ecology. Acta Ecologica Sinica, 2009, 29(11): 6174-6182] [41] Teng M, Wu C, Zhou Z, et al. Multipurpose greenway planning for changing cities: A framework integrating priorities and a least-cost path model. Landscape and Urban Planning, 2011, 103: 1-14 [42] 唐强, 闫红伟. 基于图论的大洼县西安镇水禽生境绿道网络规划. 广东农业科学, 2012(9): 158-161 [Tang Q, Yan H-W. Waterfowl habitat greenway network planning based on graph theory in Xi’an Town, Dawa County. Guangdong Agricultural Sciences, 2012(9): 158-161] [43] 唐强, 范业展. 基于最小费用模型的辽河三角洲水禽生境绿道构建. 沈阳大学学报:自然科学版, 2013, 25(4): 266-270 [Tang Q, Fan Y-Z. Construction of waterfowl habitat corridors using least-cost distance mo-del in Liaohe River Delta. Journal of Shenyang University: Natural Science, 2013, 25(4): 266-270] [44] Tang Y, Gao C, Wu X. Urban ecological corridor network construction: An integration of the least cost path model and the invest model. International Journal of Geo-Information, 2020, 9, doi: 10.3390/ijgi9010033 [45] Liu Z, Huang Q, Tang G. Identification of urban flight corridors for migratory birds in the coastal regions of Shenzhen City based on three-dimensional landscapes. Landscape Ecology, 2020, 35, doi: 10.1007/s10980-020-01032-6 [46] 吴未, 张敏, 许丽萍, 等. 基于不同网络构建方法的生境网络优化研究——以苏锡常地区白鹭为例. 生态学报, 2016, 36(3): 844-853 [Wu W, Zhang M, Xu L-P, et al. Habitat network optimization based on different network building methods: A case study of Egretta garzetta in the Su-Xi-Chang area. Acta Ecologica Sinica, 2016, 36(3): 844-853] [47] 吴未, 胡余挺, 范诗薇, 等. 不同鸟类生境网络复合与优化——以苏锡常地区白鹭、鸳鸯、雉鸡为例. 生态学报, 2016, 36(15): 4832-4842 [Wu W, Hu Y-T, Fan S-W, et al. Recombination and optimization of bird habitat networks: A case study of the little egret (Egretta garzetta), mandarin duck (Aix galericulata) and ring-necked pheasant (Phasianus colchicus) in Su-Xi-Chang area. Acta Ecologica Sinica, 2016, 36(15): 4832-4842] [48] 陈涛, 覃事妮, 陈月华. 基于鸟类功能性连接度的林地网络评价——以长沙市宁乡县中心城区为例. 四川动物, 2017, 36(5): 489-497 [Chen T, Qin S-N, Chen Y-H. The assessment on woodland network based on functional connectivity of bird’s biological characte-ristics: A case study in Ningxiang County, Changsha. Sichuan Journal of Zoology, 2017, 36(5): 489-497] [49] Askins RA, Philbrick MJ, Sugeno DS. Relationship between the regional abundance of forest and the composition of forest bird communities. Biological Conservation, 1987, 39: 129-152 [50] Williams JC, Synder SA. Restoring habitat corridors in fragmented landscapes using optimization and percolation models. Environmental Modeling and Assessment, 2005, 10: 239-250 [51] Mühlner S, Kormann U, Schmidt-Entling MH, et al. Structural versus functional habitat connectivity measures to explain bird diversity in fragmented orchards. Journal of Landscape Ecology, 2012, 3: 52-63 [52] Hong SH, Han BH, Choi SH, et al. Planning an ecological network using the predicted movement paths of urban birds. Landscape and Ecological Engineering, 2013, 9: 165-174 [53] City of Richmond. Richmond’s Ecological Network Management Strategy [EB/OL]. (2015-08-09) [2020-11-05]. http://www.richmond.ca/_shared/assets/Ecological_Network_Management_Strategy42545.pdf [54] Ersoy E, Jorgensen A, Warren PH. Identifying multispecies connectivity corridors and the spatial pattern of the landscape. Urban Forestry & Urban Greening, 2019, 40: 308-322 [55] 陈水华, 丁平, 范忠勇, 等. 城市鸟类对斑块状园林栖息地的选择性. 动物学研究, 2002, 23(1): 31-38 [Chen S-H, Ding P, Fan Z-Y, et al. Selectivity of birds to urban woodlots. Zoological Research, 2002, 23(1): 31-38] [56] 滕明君, 周志翔, 王鹏程, 等. 基于结构设计与管理的绿色廊道功能类型及其规划设计重点. 生态学报, 2010, 30(6):1604-1614 [Teng M-J, Zhou Z-X, Wang P-C, et al. The function of types of green corridor and the key issues in its planning based upon structral design and management. Acta Ecologica Sinica, 2010, 30(6): 1604-1614] [57] Xiu N, Ignatieva M, van den Bosch CK, et al. Applying a socio-ecological green network framework to Xi’an City, China. Landscape and Ecological Engineering, 2020, doi: 10.1007/s11355-020-00412-z [58] Sepp K, Kaasik A. Development of National Ecological Networks in the Baltic Countries in the Framework of the Pan-European Ecological Network [EB/OL]. (2002-08-09) [2020-11-24]. https://portals.iucn.org/library/efiles/documents/eep-032.pdf [59] Bennett G, Mulongoy KJ. Review of Experience with Ecological Networks, Corridors and Buffer Zones [EB/OL]. (2006-03-01) [2020-11-05]. https://www.cbd.int/doc/publications/cbd-ts-23.pdf [60] Minor ES, Urban DL. A graph-theory framework for evaluating landscape connectivity and conservation planning. Conservaton Biology, 2008, 22: 297-307 [61] Albert R, Jeong H, Barabási AL. Error and attack tole-rance of complex networks. Nature, 2000, 406: 378-382 [62] Albert R, Barabási AL. Statistical mechanics of complex networks. Reviews of Modern Physics, 2002, 74: 47-97 [63] Barabási AL, Bonabeau E. Scale-free networks. Scienti-fic American, 2003, 288: 60-69 [64] Urban D, Keitt T. Landscape connectivity: A graph-theo-retic perspective. Ecology, 2001, 82: 1205-1218 [65] 杨天翔, 张韦倩, 樊正球, 等. 基于鸟类边缘种行为的景观连接度研究——空间句法的反规划应用. 生态学报, 2013, 33(16): 5035-5046 [Yang T-X, Zhang W-Q, Fan Z-Q, et al. Exploring the space syntax under negative planning: A case study of landscape connectivity based on the behaviors of avian edge species. Acta Ecologica Sinica, 2013, 33(16): 5035-5046] [66] Shimazaki A, Yamaura Y, Senzaki M, et al. Urban permeability for birds: An approach combining mobbing-call experiments and circuit theory. Urban Forestry & Urban Greening, 2016, 19: 167-175 [67] 刘吉平, 吕宪国, 杨青, 等. 三江平原东北部湿地生态安全格局设计. 生态学报, 2009, 29(3): 1083-1090 [Liu J-P, Lyu X-G, Yang Q, et al. Wetland landscape ecological security patterns analysis and plan in Northeast of Sanjiang Plain. Acta Ecologica Sinica, 2009, 29(3): 1083-1090] [68] 王原, 何成, 刘荣国, 等. 宁夏沙坡头国家自然保护区鸟类景观生态安全格局构建. 生态学报, 2017, 37(16): 5531-5541 [Wang Y, He C, Liu R-G, et al. Construction of the landscape ecological pattern for the conservation of birds at Shapotou National Nature Reserve, Ningxia. Acta Ecologica Sinica, 2017, 37(16): 5531-5541] [69] Wade AA, McKelvey KS, Schwartz MK. Resistance-surface-based Wildlife Conservation Connectivity Modeling: Summary of Efforts in the United States and Guide for Practitioners [EB/OL]. (2015-06-20) [2020-11-11]. https://www.fs.fed.us/rm/pubs/rmrs_gtr333.pdf [70] Chardon JP, Adriaensen F, Matthysen E. Incorporating landscape elements into a connectivity measure: A case study for the speckled wood butterfly (Pararge aegeria L.). Landscape Ecology, 2003, 18: 561-573 [71] McRae BH, Beier P. Circuit theory predicts gene flow in plant and animal populations. Proceedings of the National Academy of Sciences, 2007, 50: 19885-19890 [72] Keeley ATH, Beier P, Keeley BW, et al. Habitat suitability is a poor proxy for landscape connectivity during dispersal and mating movements. Landscape and Urban Planning, 2017, 161: 90-102 [73] Blazquez-Cabrera S, Gastón A, Beier P, et al. Influence of separating home range and dispersal movements on characterizing corridors and effective distances. Landscape Ecology, 2016, 31: 2355-2366 [74] Beier P, Majka DR, Newell SL. Uncertainty analysis of least-cost modeling for designing wildlife linkages. Ecological Application, 2009, 19: 2067-2077 [75] McRae B, Shah V, Edelman A. Circuitscape: Modeling Landscape Connectivity to Promote Conservation and Human Health [EB/OL]. (2016-05-09) [2020-11-27]. https://circuitscape.org/pubs/circuitscape_whitepaper.pdf [76] Dickson BG, Albano CM, Anantharaman R, et al. Circuit-theory applications to connectivity science and conservation. Conservation Biology, 2018, 33: 239-249 [77] Grafius DR, Corstanje R, Siriwardena GM, et al. A bird’s eye view: Using circuit theory to study urban landscape connectivity for birds. Landscape Ecology, 2017, 32: 1771-1787 [78] Mettke-Hofmann C, Gwinner E. Long-term memory for a life on the move. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100: 5863-5866 [79] McRae BH, Hall SA, Beier P, et al. Where to restore ecological connectivity? Detecting barriers and quanti-fying restoration benefits. PLoS One, 2012, 7(12): e0052604 [80] Pinto N, Keitt TH. Beyond the least-cost path: Evaluating corridor redundancy using a graph-theoretic approach. Landscape Ecology, 2008, 24: 253-266 [81] Braunisch V, Segelbacher G, Hirzel AH. Modelling functional landscape connectivity from genetic population structure: A new spatially explicit approach. Molecular Ecology, 2010, 19: 3664-3678 [82] 单楠, 周可新, 潘扬, 等. 生物多样性保护廊道构建方法研究进展. 生态学报, 2019, 39(2): 411-420 [Shan N, Zhou K-X, Pan Y, et al. Research advances in design methods of biodiversity conservation corridors. Acta Ecologica Sinica, 2019, 39(2): 411-420] [83] 陈春娣, 贾振毅,吴胜军, 等. 基于文献计量法的中国景观连接度应用研究进展. 生态学报, 2017, 37(10): 3243-3255 [Chen C-D, Jia Z-Y, Wu S-J, et al. A bibliometric review of Chinese studies on the application of landscape connectivity. Acta Ecologica Sinica, 2017, 37(10): 3243-3255] [84] Bentrup G. Conservation Buffers: Design Guidelines [EB/OL]. (2008-09-01) [2020-11-26]. http://nac.unl.edu/buffers/index.html [85] Fox J, Semel B, Ward MP. The reproductive success of sandhill cranes in midwestern landscapes. The Journal of Wildlife Management, 2019, 83: 1163-1171 [86] Kindlmann P, Burel F. Connectivity measures: A review. Landscape Ecology, 2008, 23: 879-890 |
[1] | 王琦, 史娜娜, 韩煜, 肖能文. 中国陆域生物多样性综合评估指标体系构建 [J]. 应用生态学报, 2021, 32(8): 2773-2782. |
[2] | 彭莉, 梁国付, 求朋威. 开封市城市水系微生境特征对两栖动物多样性的影响 [J]. 应用生态学报, 2021, 32(7): 2597-2603. |
[3] | 柏文富, 禹霖, 李建挥, 聂东伶, 严佳文, 吴思政, 李继承, 肖金顶. 大围山樱属植物群落结构及物种多样性 [J]. 应用生态学报, 2021, 32(4): 1201-1212. |
[4] | 李辉, 曲洋, 姚敏杰, 田文杰, 王小庆, 石犇, 曹丽娜, 岳凌帆, 曹凯琴. 赤泥自然成土过程及其微生物驱动机制 [J]. 应用生态学报, 2021, 32(4): 1452-1460. |
[5] | 边琦, 王成, 郝泽周. 生物声音监测研究在生物多样性领域的应用 [J]. 应用生态学报, 2021, 32(3): 1119-1128. |
[6] | 梁静香, 周永东, 王忠明, 张亚洲, 金海卫, 徐开达. 三门湾大型底栖动物群落结构及其与环境因子的关系 [J]. 应用生态学报, 2020, 31(9): 3187-3193. |
[7] | 高昌源, 付保荣, 李晓军, 于大炮, 巩宗强. 辽宁省生物多样性保护优先区识别 [J]. 应用生态学报, 2020, 31(5): 1673-1681. |
[8] | 王芳, 袁兴中, 熊森, 黄亚洲, 刘红, 潘远珍. 重庆澎溪河湿地自然保护区生物多样性空间格局及热点区 [J]. 应用生态学报, 2020, 31(5): 1682-1690. |
[9] | 王可洪, 袁兴中, 张冠雄, 武帅楷, 刘双爽, 张梦婕. 河岸无脊椎动物多样性维持机制研究进展 [J]. 应用生态学报, 2020, 31(3): 1043-1054. |
[10] | 胡文浩, 段美春, 那书豪, 张锋, 宇振荣. 坝上地区农田及两种恢复生境中蜘蛛多样性与群落特征 [J]. 应用生态学报, 2020, 31(2): 643-650. |
[11] | 徐佳文, 石福习, 张朝晖, 万松泽, 吴盼盼, 刘姗姗, 毛瑢. 中亚热带濒危植物毛红椿和南方红豆杉种内与种间竞争差异 [J]. 应用生态学报, 2020, 31(1): 1-8. |
[12] | 刘来盘, 沈文静, 薛堃, 刘标. 转g10-epsps基因耐除草剂大豆ZUTS-33对农田生物多样性的影响 [J]. 应用生态学报, 2020, 31(1): 122-128. |
[13] | 文志, 郑华, 欧阳志云. 生物多样性与生态系统服务关系研究进展 [J]. 应用生态学报, 2020, 31(1): 340-348. |
[14] | 姜勇, 徐柱文, 王汝振, 李慧, 张玉革. 长期施肥和增水对半干旱草地土壤性质和植物性状的影响 [J]. 应用生态学报, 2019, 30(7): 2470-2480. |
[15] | 刘子卿, 万宜乐, 郝玉娥. 线虫内寄生真菌资源及生防应用研究进展 [J]. 应用生态学报, 2019, 30(6): 2129-2136. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||