欢迎访问《应用生态学报》官方网站,今天是 分享到:

应用生态学报 ›› 2023, Vol. 34 ›› Issue (8): 2285-2296.doi: 10.13287/j.1001-9332.202308.020

• 综合评述 • 上一篇    下一篇

屋顶绿化低碳景观潜力探究

董鑫1,2,3, 刘骁4, 何宝杰1,2,3*   

  1. 1重庆大学建筑城规学院低碳与韧性城市研究中心, 重庆 400045;
    2重庆大学山地城镇建设与新技术教育部重点实验室, 重庆 400045;
    3重庆大学溧阳智慧城市研究院, 江苏溧阳 213300;
    4华南理工大学亚热带建筑科学国家重点实验室, 广州 510641
  • 收稿日期:2023-01-10 接受日期:2023-06-02 出版日期:2023-08-15 发布日期:2024-02-15
  • 通讯作者: *E-mail: baojie.unsw@gmail.com
  • 作者简介:董 鑫, 男, 1994年生, 博士研究生。主要从事低碳城市、屋顶绿化碳潜力评估研究。E-mail: 201815131078@cqu.edu.cn
  • 基金资助:
    国家自然科学基金项目(52108011)、重庆东站片区绿色低碳人居环境营造路径与关键技术应用研究项目(2022-KJ-JY-20)、重庆市技术创新与应用发展专项重点项目(CSTB2022TIAD-KPX0195)、广州市哲学社科规划2022年度课题(2022GZQN14)、广东省哲学社会科学规划2022年度项目(GD22XGL02)和中央高校基本科研业务费专项资金(QNMS202211)

Exploring the potential of roof greening for low-carbon landscapes

DONG Xin1,2,3, LIU Xiao4, HE Baojie1,2,3*   

  1. 1Centre for Climate-Resilient and Low-Carbon Cities, School of Architecture and Urban Planning, Chongqing University, Chongqing 400045, China;
    2Ministry of Education Key Laboratory of New Technology for Construction of Cities in Mountain Area, Chongqing University, Chongqing 400045, China;
    3Institute for Smart City of Chongqing University in Liyang, Chongqing University, Liyang 213300, Jiangsu, China;
    4State Key Laboratory of Subtropical Building Science, South China University of Technology, Guangzhou 510641, China
  • Received:2023-01-10 Accepted:2023-06-02 Online:2023-08-15 Published:2024-02-15

摘要: 屋顶绿化作为一类城市人工生态系统,在其生命周期内展现出碳源/汇特征。然而,屋顶绿化碳作用机制复杂,目前缺少针对性的综合碳绩效量化方法和考核指标,阻碍了屋顶绿化城市脱碳的推广应用。着眼于屋顶绿化低碳景观潜力量化,本文分析了屋顶绿化系统内部碳循环机制,探究了生物碳汇、隐含碳、运行碳以及生物能源供给4条减碳增汇路径(P1~P4);基于碳排放归一化值和碳回收期双重绩效指标,总结了各减碳增汇路径归一化值测度方法;通过提取文献数据,量化了各减碳增汇路径的绩效潜力和特点。结果表明: 路径P1~P4潜力量化值分别为9.54、-2.26、2.96、0.35 kg CO2·m-2·a-1,各路径潜力受植物类型、气候等因素影响很大;此外,基础数据库不完善、评估情景异质对测度准确性产生了影响。对粗放型绿色屋顶综合低碳景观潜力进行分情景讨论,其生命周期(40年)综合减碳量在92.24~433.42 kg CO2·m-2,碳回收期为5~14年。最后,对测度评估中存在的问题进行了总结,以促进未来评估更新完善。

关键词: 屋顶绿化, 低碳景观潜力, 评估路径, 绩效指标, 城市碳汇

Abstract: As one type of urban artificial ecosystems, roof greening exhibits carbon source/sink characteristics during their life cycle. The carbon cycle mechanism is complex. The lack of exhaustive carbon performance quantification methods and assessment indicators hinders the promotion and implementation of green roof urban decarboni-zation. Focusing on the quantification of roof greening low-carbon landscape potential, we analyzed the internal carbon cycle mechanism of green roof systems and explored four carbon reduction and sink pathways (P1-P4): biogenic carbon sink, embodied carbon, operational carbon, and bioenergy supply. Based on the dual performance indicators of normalized value of carbon emissions and carbon payback time, we summarized the normalized value measurement method of each pathway. The potential and characteristics of each pathway were quantified by extracting data from the literature. The results showed that the quantified potential values for P1 to P4 were 9.54, -2.26, 2.96 and 0.35 kg CO2·m-2·a-1, respectively, and that the potential values for each pathway were strongly influenced by plant types, climate, and other factors. The imperfect base database and the heterogeneity of assessment scenarios impacted the accuracy of the measurements. The integrated low carbon landscape potential of extensive green roofs was discussed in sub-scenarios, with the 40-year-life cycle integrated carbon reduction ranging from 92.24 to 433.42 kg CO2·m-2 and the carbon payback period ranging from 5 to 14 years. Finally, we summarized the problems in the assessment to facilitate future updates and improvements.

Key words: roof greening, low carbon landscape potential, assessment pathway, performance indicator, urban carbon sink.